Molecular Foundry: Theory of Nanostructures | David Prendergast

David Prendergast

Staff Scientist
Theory of Nanostructured Materials Facility

2002 Ph.D., Physics, University College Cork, Ireland
1999 B.Sc., Physics and Mathematics, University College Cork, Ireland

Professional History:
2007-present Staff Scientist, Materials Sciences Division, LBNL
2005-2007 Postdoctoral Fellow, Department of Physics, UC Berkeley and Chemical Sciences Division, LBNL
2002-2005 Postdoctoral Fellow, Quantum Simulations Group, LLNL

David Prendergast is a staff scientist at The Molecular Foundry, one of five US Department of Energy Nanoscale Science Research Centers. These are National User Facilities for Nanoscience which serve academic, government and industrial research with their multidisciplinary expertise and capabilities. Dr. Prendergast is the Facility Director for the Theory of Nanostructured Materials at The Molecular Foundry since 2012. He has a PhD in Physics from University College Cork, Ireland (2002). He worked as a postdoc at Lawrence Livermore National Laboratory with Prof. Giulia Galli (currently at the University of Chicago) and on the UC Berkeley Campus and at Berkeley Lab with Prof. Steven G. Louie. His current research focuses on developments and applications of first-principles electronic structure theory in the context of energy-relevant phenomena in materials and chemistry. He has particular expertise in the simulation and interpretation of synchrotron X-ray spectroscopy measurements as a means of connecting characterization of complex interfacial systems to atomistic or molecular scale structural and dynamical models.

Research Interests | Highlights | Publications | Jobs

Research Interests

Current research is concentrated on predicting x-ray absorption spectra of a wide range of materials from first principles and developing new and efficient approaches to electronic structure problems. I have developed a parameter-free, predictive approach to simulating and interpreting x-ray spectra and I am currently applying it to molecular and condensed phase systems, functional interfaces and nanoscale phenomena.

I am also developing more efficient computational approaches to the calculation of excited state properties. Electron addition and removal energies, computed with the GW approximation, and electron-hole excited states, computed by solving the Bethe- Salpeter equation (BSE), are prohibitively expensive for large systems. By using a more compact representation for the electron Hamiltonian, I reduce the overall cost of such calculations.

Applications are to a range of energy-relevant phenomena and materials systems, as dictated by current funding and multiple user projects and collaborations at the Molecular Foundry and the Advanced Light Source. I am particularly interested in the details of practical atomistic and electronic structure simulations of electrochemical interfaces (as found in batteries and photoelectrochemical devices), energy conversion processes and ultrafast phenomena.

Postdoctoral research focused on optically excited states in metallic carbon nanotubes using the GW-BSE approach. I have also explored the electronic properties of water and aqueous systems in ground and excited states using density functional theory, with particular application to the theoretical prediction of x-ray absorption spectra of liquid water at ambient conditions. Also, I have analyzed the impact of aqueous solvation on the characteristics of optically active molecules and silicon nanostructures. Graduate research centered on developing efficient algorithmic tools to aid in the optimization of many-body wave functions for use in quantum Monte Carlo calculations, with particular application to assessing differences in the form of electron correlation in diamond and graphite.


User Project with the UC Berkeley EFRC for Gas Separations

A Better Way of Scrubbing CO2
Berkeley Lab News Center Materials chemistry: Cooperative carbon capture (Nature: News and Views)

User Project with UC Berkeley's Saykally Group on Li-ion battery electrolytes

Making a Good Thing Better: Berkeley Lab Researchers Open a Possible Avenue to Better Electrolyte for Lithium Ion Batteries
Berkeley Lab News Center

Collaboration with UC Berkeley and LBNL Chemical Sciences Division

Scientists measure speedy electrons in silicon
UC Berkeley News Center
Science Perspective HPC wire

Materials Science Division collaboration with Joint Center for Energy Storage Research (JCESR)

Berkeley Lab Study Reveals Molecular Structure of Water at Gold Electrodes
Berkeley Lab News Center
Interfaces: Scientists strike wet gold (Nature Chemistry: News and Views) R&D Magazine

Joint Center for Energy Storage Research (JCESR) User Project

Dispelling a Misconception About Mg-Ion Batteries
Berkeley Lab News Center

User project with the Saykally Group at UC Berkeley:

New Insights on Carbonic Acid in Water
Berkeley Lab News Center
Science Codex

User project with UC Berkeley EFRC Center for Gas Separations (Jeff Kortright):

An Inside Look at a MOF in Action
NERSC Science News
Berkeley Lab News Center

User project with the Saykally Group at UC Berkeley:

Berkeley Lab News Center: In Water as In Love, Likes Can Attract

← Physical Chemistry Chemical Physics cover article

Chemical Physics Letters Frontiers Article →

User project with University of Buffalo and SEMATECH:

Scientific American: Wrinkles rankle graphene
Today at LBL: The Straight Story on Graphene
WNED (with audio): Local researchers try to unlock lucrative potential of graphene
MRS Bulletin: Nano Focus: Electron clouds distortion on graphene surface harm conductivity

User project with the Saykally Group at UC Berkeley:

Berkeley Lab News Center: Dancing in the Dark: Berkeley Lab Scientists Shed New Light on Protein-Salt Interactions
NERSC Exhibit Hall video from SC10 (courtesy of Richard Gerber).


2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2002 2001



227. Atomically synergistic Zn-Cr catalyst for iso-stoichiometric co-conversion of ethane and CO2 to ethylene and CO Ji Yang, Lu Wang, Jiawei Wan, Farid El Gabaly, Andre L Fernandes Cauduro, Bernice E Mills, Jeng-Lung Chen, Liang-Ching Hsu, Daewon Lee, Xiao Zhao, Haimei Zheng, Miquel Salmeron, Caiqi Wang, Zhun Dong, Hongfei Lin, Gabor A Somorjai, Fabian Rosner, Hanna Breunig, David Prendergast, De-en Jiang, Seema Singh, Ji Su, Nat Commun 15, 911 (2024).[abstract]

226. Modulation of electrocatalytic activity by tuning anion electronegativity: case study with copper chalcogenides Harish Singh, David Prendergast, Manashi Nath, Journal of Physics: Energy 5, 045016 (2023).[abstract]

225. Ternary NiMo-Bi liquid alloy catalyst for efficient hydrogen production from methane pyrolysis Luning Chen, Zhigang Song, Shuchen Zhang, Chung-Kai Chang, Yu-Chun Chuang, Xinxing Peng, Chaochao Dun, Jeffrey J Urban, Jinghua Guo, Jeng-Lung Chen, David Prendergast, Miquel Salmeron, Gabor A Somorjai, Ji Su, Science 381, 6660 (2023).[abstract]

224. Direct Observation of Enhanced Electron-Phonon Coupling in Copper Nanoparticles in the Warm-Dense Matter Regime Quynh L. D. Nguyen, Jacopo Simoni, Kevin M. Dorney, Xun Shi, Jennifer L. Ellis, Nathan J. Brooks, Daniel D. Hickstein, Amanda G. Grennell, Sadegh Yazdi, Eleanor E. B. Campbell, Liang Z. Tan, David Prendergast, Jerome Daligault, Henry C. Kapteyn, and Margaret M. Murnane, Phys. Rev. Lett. 131, 085101 (2023).[abstract]

223. Atomic-Scale Corrugations in Crystalline Polypeptoid Nanosheets Revealed by Three-Dimensional Cryogenic Electron Microscopy Xi Jiang, Morgan Seidler, Glenn L. Butterfoss, Xubo Luo, Tianyi Yu, Sunting Xuan, David Prendergast, Ronald N. Zuckermann, and Nitash P. Balsara, ACS Macro Lett. 12, 632 (2023).[abstract]

222. Oxygen fugacity buffering in high-pressure solid media assemblies from IW-6.5 to IW+4.5 and application to the V K-edge oxybarometer Kevin Righter, Anna L. Butterworth, Zack Gainsforth, Christine E. Jilly-Rehak, Subhayan Roychoudhury, Kayla Iacovino, Richard Rowland, Timmons M. Erickson, Kellye Pando, Daniel K. Ross, David Prendergast and Andrew J. Westphal, American Mineralogist 108, 498 (2023).[abstract]

221. Structural Elucidation of a Polypeptoid Chain in a Crystalline Lattice Reveals Key Morphology-Directing Role of the N-Terminus Tianyi Yu, Xubo Luo, David Prendergast, Glenn L. Butterfoss, Behzad Rad, Nitash P. Balsara, Ronald N. Zuckermann, and Xi Jiang, ACS Nano 17, 4958 (2023).[abstract]

220. Recent advances in modelling core-electron spectroscopy John J. Rehr, David Prendergast and Johannes Lischner, Phys Chem Chem Phys 25, 7572 (2023).[abstract]

219. Unsupervised learning of representative local atomic arrangements in molecular dynamics data Fabrice Roncoroni, Ana Sanz-Matias, Siddharth Sundararaman and David Prendergast, Phys. Chem. Chem. Phys. 25, 13741 (2023).[abstract]

218. Investigating the Electronic Structure of Prospective Water-splitting Oxide BaCe0.25Mn0.75O3−δ Before and After Thermal Reduction Subhayan Roychoudhury, Sarah Shulda, Anuj, Goyal, Robert Bell, Sami Sainio, Nicholas Strange, James Park, Eric Coker, Stephan Lany, David Ginley, and David Prendergast, Chem. Mater. 35 1935 (2023).[abstract]

217. Efficient core-excited state orbital perspective on calculating x-ray absorption transitions in determinant framework Subhayan Roychoudhury and David Prendergast, Phys. Rev. B 107, 035146 (2023).[abstract]


216. Synchrotron-based techniques for characterizing STCH water-splitting materials Sarah Shulda, Robert T. Bell, Nicholas A. Strange, Lucy Metzroth, Karen N. Heinselman, Sami Sainio, Subhayan Roychoudhury, David Prendergast, Anthony H. McDaniel and David S. Ginley, Front. Energy Res. 10, 931364 (2022).[abstract]

215. Understanding the Impact of Multi-Chain Ion Coordination in Poly(ether-Acetal) Electrolytes Siddharth Sundararaman, David M. Halat, Jeffrey A. Reimer, Nitash P. Balsara, and David Prendergast, Macromolecules 55, 9880 (2022).[abstract]

214. Excitonic Effects in X-ray Absorption Spectra of Fluoride Salts and Their Surfaces Ana Sanz-Matias, Subhayan Roychoudhury, Xuefei Feng, Feipeng Yang, Li Cheng Kao, Kevin R. Zavadil, Jinghua Guo, and David Prendergast, Chem. Mater. 34, 9144 (2022).[abstract]

213. CleaRIXS: A fast and accurate first-principles method for simulation and analysis of resonant inelastic x-ray scattering Subhayan Roychoudhury and David Prendergast, Phys. Rev. B 106, 115115 (2022).[abstract]

212. Real-Space Pseudopotential Method for the Calculation of 1s Core-Level Binding Energies Qiang Xu, David Prendergast, Jin Qian, J. Chem. Theory Comput. 18, 5471 (2022).[abstract]

211. Changes in polarization dictate necessary approximations for modeling electronic deexcitation intensity: Application to x-ray emission Subhayan Roychoudhury, Leonardo A. Cunha, Martin Head-Gordon, and David Prendergast Phys. Rev. B 106, 075133 (2022).[abstract]

210. A Heterogeneous Oxide Enables Reversible Calcium Electrodeposition for a Calcium Battery Scott A. McClary, Daniel M. Long, Ana Sanz-Matias, Paul G. Kotula, David Prendergast, Katherine L. Jungjohann, and Kevin R. Zavadil ACS Energy Lett 7, 2792 (2022).[abstract]

209. The Importance of the σ-hole in the Self-Assembly of Halogenated Polypeptoids Morgan Seidler, Nan K. Li, Xubo Luo, Sunting Xuan, David Prendergast, Ronald N. Zuckermann, Nitash P. Balsara and Xi Jiang Microscopy and Microanalysis 28, 2206 (2022).[abstract]

208. Nature of the Electrical Double Layer on Suspended Graphene Electrodes Shanshan Yang, Xiao Zhao, Yi-Hsien Lu, Edward S. Barnard, Peidong Yang, Artem Baskin, John W. Lawson, David Prendergast, and Miquel Salmeron J. Am. Chem. Soc. 144, 13327 (2022).[abstract]

207. X-ray absorption spectroscopy insights on the structure anisotropy and charge transfer in Chevrel Phase chalcogenides Forrest P Hyler, Brian Alan Wuille Bille, Jessica Cristina Ortíz-Rodríguez, Ana Sanz Matías, Subhayan Roychoudhury, Joseph Terry Perryman, Christopher Patridge, Nicholas Singstock, Charles Musgrave, David Prendergast and Jesus M. Velazquez, Phys. Chem. Chem. Phys. 24, 17289 (2022).[abstract]

206. Importance of the Positively Charged σ-Hole in Crystal Engineering of Halogenated Polypeptoids Morgan Seidler, Nan K. Li, Xubo Luo, Sunting Xuan, Ronald N. Zuckermann, Nitash P. Balsara, David Prendergast, and Xi Jiang, J. Phys. Chem. B 126, 4152 (2022).[abstract]

205. Conical intersection and coherent vibrational dynamics in alkyl iodides captured by attosecond transient absorption spectroscopy Kristina F Chang, Han Wang, Sonia M Poullain, Jesús González-Vázquez, Luis Bañares, David Prendergast, Daniel M Neumark, Stephen R Leone, J. Chem. Phys. 156, 114304 (2022).[abstract]

204. Resolving the backbone tilt of crystalline poly (3-hexylthiophene) with resonant tender X-ray diffraction Guillaume Freychet, Paul Chantler, Yuxuan Huang, Wen Liang Tan, Mikhail Zhernenkov, Nagaraj Nayak, Anil Kumar, Peter A Gilhooly-Finn, Christian Nielsen, Lars Thomsen, Subhayan Roychoudhury, Henning Sirringhaus, David Prendergast, Christopher R McNeill, Materials Horizons, 9, 1649 (2022).[abstract]

203. Reversible dehydrogenation and rehydrogenation of cyclohexane and methylcyclohexane by single-site platinum catalyst Luning Chen, Pragya Verma, Kaipeng Hou, Zhiyuan Qi, Shuchen Zhang, Yi-Sheng Liu, Jinghua Guo, Vitalie Stavila, Mark D Allendorf, Lansun Zheng, Miquel Salmeron, David Prendergast, Gabor A Somorjai, Ji Su, Nature Comms 13, 1092 (2022).[abstract]

202. Mechanistic Advantages of Organotin Molecular EUV Photoresists Jonathan H. Ma, Craig Needham, Han Wang, Andrew Neureuther, David Prendergast, and Patrick Naulleau, ACS Appl. Mater. Interfaces 14, 5514 (2022).[abstract]

201. Chloride-Assisted Corrosion of Copper and Protection by Benzotriazole Shanshan Yang, Xiao Zhao, Zhiyuan Qi, Yi-Hsien Lu, Gabor Somorjai, Peidong Yang, Artem Baskin, David Prendergast, and Miquel Salmeron, ACS Appl. Mater. Interfaces 14, 6093 (2022).[abstract]

200. Efficient Basis Sets for Core-Excited States Motivated by Slater's Rules Jin Qian, Ethan Crumlin, and David Prendergast, Phys Chem Chem Phys 24, 2243 (2022).[abstract]


199. Core-hole potentials and related effects Eric L. Shirley, Lars G. M. Pettersson, David Prendergast, Int. Tables Crystallogr. 1 (2021).[abstract]

198. Lessons learned from FeSb2O4 on stereoactive lone pairs as a design principle for anion insertion Wasif Zaheer, George Agbeworvi, Saul Perez-Beltran, Justin L. Andrews, Yierpan Aierken, Conan Weiland, Cherno Jaye, Young-Sang Yu, David A. Shapiro, Sirine C. Fakra, Daniel A. Fischer, Jinghua Guo, David Prendergast, Sarbajit Banerjee, Cell Reports Physical Science 2, 100592 (2021).[abstract]

197. Exploring the Ion Solvation Environments in Solid-State Polymer Electrolytes through Free-Energy Sampling Siddharth Sundararaman, David M. Halat, Youngwoo Choo, Rachel L. Snyder, Brooks A. Abel, Geoffrey W. Coates, Jeffrey A. Reimer, Nitash P. Balsara, and David Prendergast, Macromolecules 54, 8590 (2021).[abstract]

196. Controlled Experiments and Optimized Theory of Absorption Spectra of Li Metal and Salts Subhayan Roychoudhury, Zengqing Zhuo, Ruimin Qiao, Liwen Wan, Yufeng Liang, Feng Pan, Yi-de Chuang, David Prendergast, and Wanli Yang ACS Appl. Mater. Interfaces 13, 45488 (2021).[abstract]

195. Gold-like activity copper-like selectivity of heteroatomic transition metal carbides for electrocatalytic carbon dioxide reduction reaction Mohammadreza Esmaeilirad, Artem Baskin, Alireza Kondori, Ana Sanz-Matias, Jin Qian, Boao Song, Mahmoud Tamadoni Saray, Kamil Kucuk, Andres Ruiz Belmonte, Pablo Navarro Munoz Delgado, Junwon Park, Rahman Azari, Carlo U. Segre, Reza Shahbazian-Yassar, David Prendergast and Mohammad Asadi, Nature Communications 12, 5067 (2021).[abstract]

194. Using cryo-TEM to study the effect of side-chain chemistry on the crystal motifs in polypeptoid nanosheets Morgan Seidler, Nan Li, Sunting Xuan, David Prendergast, Ronald Zuckermann, Nitash Balsara and Xi Jiang, Microscopy and Microanalysis 27, 2894 (2021).[abstract]

193. Insights into the Mechanism of Methanol Steam Reforming Tandem Reaction over CeO2 Supported Single-Site Catalysts Luning Chen, Zhiyuan Qi, Xinxing Peng, Jeng-Lung Chen, Chih-Wen Pao, Xibo Zhang, Chaochao Dun, Melissa Young, David Prendergast, Jeffrey J. Urban, Jinghua Guo, Gabor A. Somorjai, and Ji Su, J. Am. Chem. Soc. 143, 12074 (2021).[abstract]

192. Modifying Li+ and Anion Diffusivities in Polyacetal Electrolytes: A Pulsed-Field-Gradient NMR Study of Ion Self-Diffusion David M. Halat, Rachel L. Snyder, Siddharth Sundararaman, Youngwoo Choo, Kevin W. Gao, Zach J. Hoffman, Brooks A. Abel, Lorena S. Grundy, Michael D. Galluzzo, Madeleine P. Gordon, Hasan Celik, Jeffrey J. Urban, David Prendergast, Geoffrey W. Coates, Nitash P. Balsara, and Jeffrey A. Reimer, Chem. Mater. 33, 4915 (2021).[abstract]

191. Mapping wave packet bifurcation at a conical intersection in CH3I by attosecond XUV transient absorption spectroscopy Kristina F Chang, Han Wang, Sonia M Poullain, David Prendergast, Daniel M Neumark, Stephen R Leone, J. Phys. Chem. 154, 234301 (2021).[abstract]

190. Improved Li+ Transport in Polyacetal Electrolytes: Conductivity and Current Fraction in a Series of Polymers Rachel L Snyder, Youngwoo Choo, Kevin W Gao, David M Halat, Brooks A Abel, Siddharth Sundararaman, David Prendergast, Jeffrey A Reimer, Nitash P Balsara, Geoffrey W Coates, ACS Energy Letters 6, 1886 (2021).[abstract]

189. Anion-Assisted Delivery of Multivalent Cations to Inert Electrodes Artem Baskin, John W. Lawson, David Prendergast, J. Phys. Chem. Lett. 12, 4347 (2021).[abstract]

188. Stabilized open metal sites in bimetallic metal–organic framework catalysts for hydrogen production from alcohols Jonathan L. Snider, Ji Su, Pragya Verma, Farid El Gabaly, Joshua D. Sugar, Luning Chen, Jeffery M. Chames, A. Alec Talin, Chaochao Dun, Jeffrey J. Urban, Vitalie Stavila, David Prendergast, Gabor A. Somorjai and Mark D. Allendorf, J. Mater. Chem. A 9, 10869 (2021).[abstract]

187. Diversity-oriented synthesis of polymer membranes with ion solvation cages Miranda J. Baran, Mark E. Carrington, Swagat Sahu, Artem Baskin, Junhua Song, Michael A. Baird, Kee Sung Han, Karl T. Mueller, Simon J. Teat, Stephen M. Meckler, Chengyin Fu, David Prendergast and Brett A. Helms, Nature 592, 225 (2021).[abstract]

186. Electronic structure modulation of MoS2 by substitutional Se incorporation and interfacial MoO3 hybridization: Implications of Fermi engineering for electrocatalytic hydrogen evolution and oxygen evolution Abhishek Parija, Wasif Zaheer, Junsang Cho, Theodore E. G. Alivio, Sirine C. Fakra, Mohammed Al-Hashimi, David Prendergast, and Sarbajit Banerjee, Chem. Phys. Rev. 2, 011401 (2021).[abstract]

185. Understanding the Structural Evolution of a Nickel Chalcogenide Electrocatalyst Surface for Water Oxidation Umanga De Silva, Jennifer See, Wipula PR Liyanage, Jahangir Masud, Jinpeng Wu, Wanli Yang, Wei-Ting Chen, David Prendergast, Manashi Nath, Energy Fuels 35, 4387 (2021).[abstract]

184. CuBi2O4: Electronic Structure, Optical Properties, and Photoelectrochemical Performance Limitations of the Photocathode Jason K. Cooper, Zemin Zhang, Subhayan Roychoudhury, Chang-Ming Jiang, Sheraz Gul, Yi-Sheng Liu, Rohan Dhall, Alejandro Ceballos, Junko Yano, David Prendergast, and Sebastian E. Reyes-Lillo, Chem. Mater. 33, 934 (2021).[abstract]

183. Backbonding contributions to small molecule chemisorption in a metal–organic framework with open copper (I) centers G. M. Su, H. Wang, B. Barnett, J. R. Long, D. Prendergast, W. S. Drisdell, Chemical Science 12, 2156 (2021).[abstract]

182. Revealing Charge-Transfer Dynamics at Electrified Sulfur Cathodes Using Constrained Density Functional Theory Yierpan Aierken, Ankit Agrawal, Meiling Sun, Marko Melander, Ethan J. Crumlin, Brett A. Helms, and David Prendergast, J. Phys. Chem. Lett. 12, 739 (2021).[abstract]


181. Enhanced and stabilized hydrogen production from methanol by ultrasmall Ni nanoclusters immobilized on defect-rich h-BN nanosheets Zhuolei Zhang, Ji Su, Ana Sanz Matias, Madeleine Gordon, Yi-Sheng Liu, Jinghua Guo, Chengyu Song, Chaochao Dun, David Prendergast, Gabor A Somorjai, Jeffrey J Urban, Proc. Nat. Acad. Sci. 117, 29442 (2020).[abstract]

180. Layer Edge States Stabilized by Internal Electric Fields in Two-Dimensional Hybrid Perovskites Jisook Hong, David Prendergast, Liang Z Tan, Nano Lett. 21, 182 (2021).[abstract]

179. Ion Solvation Engineering: How to Manipulate the Multiplicity of the Coordination Environment of Multivalent Ions Artem Baskin, David Prendergast, J. Phys. Chem. Lett. 11, 9336 (2020).[abstract]

178. Harnessing Structural and Dynamic Heterogeneity to Direct Ion Transport in Plastic Crystal-Polymer Composite Solid-Ion Conductors Ankit Agrawal, Yierpan Aierken, Meiling Sun, Ethan J Crumlin, David Prendergast, Brett A Helms, arxiv (2020).[abstract]

177. An Atomic Hourglass and Thermometer Based on Diffusion of a Mobile Dopant in VO2 Sellers, Diane; Braham, Erick; Villarreal, Ruben; Zhang, Baiyu; Parija, Abhishek; Brown, Timothy; Alivio, Theodore; Clarke, Heidi; De Jesus, Luis; Zuin, Lucia; Prendergast, David; Qian, Xiaofeng; Arroyave, Raymundo; Shamberger, Patrick; Banerjee, Sarbajit; Journal of the American Chemical Society, 142, 15513 (2020).[abstract]

176. Deciphering the oxygen absorption pre-edge: a caveat on its application for probing oxygen redox reactions in batteries Subhayan Roychoudhury, Ruimin Qiao, Zengqing Zhuo, Qinghao Li, Yingchun Lyu, Jung Hyun Kim, Eungje Lee, Bryant J. Polzin, Jinghua Guo, Shishen Yan, Yongsheng Hu, Hong Li, David Prendergast, Wanli Yang, Energy & Environmental Materials 4, 246 (2020).[abstract]

175. Revealing electronic state-switching at conical intersections in alkyl iodides by ultrafast XUV transient absorption spectroscopy Kristina F. Chang, Maurizio Reduzzi, Han Wang, Sonia M. Poullain, Yuki Kobayashi, Lou Barreau, David Prendergast, Daniel M. Neumark, Stephen R. Leone, Nature Communications 11, 4042 (2020).[abstract]

174. Ultra-thin Free-Standing Oxide Membranes for Electron and Photon Spectroscopy Studies of Solid-gas and Solid-liquid Interfaces Yi-Hsien Lu, Carlos Morales, Xiao Zhao, Matthijs A. Van Spronsen, Artem Baskin, David Prendergast, Peidong Yang, Hans A. Bechtel, Edward S. Barnard, D. Frank Ogletree, Virginia Altoe, Leonardo Soriano, Adam Michael Schwartzberg, and Miquel Salmeron, Nano Lett. 20, 6364 (2020).[abstract]

173. Revealing Nanoscale Chemical Heterogeneities in Polycrystalline Mo‐BiVO4 Thin Films Johanna Eichhorn Sebastian E. Reyes‐Lillo Subhayan Roychoudhury Shawn Sallis Johannes Weis David M. Larson Jason K. Cooper Ian D. Sharp David Prendergast Francesca M. Toma, Small 2001600 (2020).[abstract]

172. Addressing the sensitivity of signals from solid/liquid ambient pressure XPS (APXPS) measurement Jin Qian, Artem Baskin, Zhi Liu, David Prendergast, and Ethan J. Crumlin, J. Chem. Phys. 153, 044709 (2020).[abstract]

171. Reduction of electron-phonon coupling in warm dense iron A. Fernandez-Panella, T. Ogitsu, K. Engelhorn, A. A. Correa, B. Barbrel, S. Hamel, D. G. Prendergast, D. Pemmaraju, M. A. Beckwith, L. J. Bae, J. W. Lee, B. I. Cho, P. A. Heimann, R. W. Falcone, and Y. Ping, Phys. Rev. B 101, 184309 (2020).[abstract]

170. Metal-Insulator Transitions in β′-CuxV2O5 Mediated by Polaron Oscillation and Cation Shuttling Abhishek Parija, Joseph V. Handy, Justin L. Andrews, Jinpeng Wu, Linda Wangoh, Sujay Singh, Chris Jozwiak, Aaron Bostwick, Eli Rotenberg, Wanli Yang, Sirine C. Fakra, Mohammed Al-Hashimi, G. Sambandamurthy, Louis F. J. Piper, R. Stanley Williams, David Prendergast, Sarbajit Banerjee, Matter 2, 1166 (2020).[abstract]

169. Ultrafast core-excited electron dynamics in model crystalline organic semiconductors Vincent V. Duong, David Prendergast and Alexander L. Ayzner, Phys. Chem. Chem. Phys. 22, 1400 (2020).[abstract]


168. Investigating EUV radiation chemistry with first principle quantum chemistry calculations JH Ma, H Wang, D Prendergast, A Neureuther, P Naulleau, International Conference on Extreme Ultraviolet Lithography 11147, 111470X (2019).[abstract]

167. Atomic-level engineering and imaging of polypeptoid crystal lattices Sunting Xuan, Xi Jiang, Ryan K Spencer, Nan K Li, David Prendergast, Nitash P Balsara, Ronald N Zuckermann, Proceedings of the National Academy of Sciences 116, 22491 (2019).[abstract]

166. Runaway Carbon Dioxide Conversion Leads to Enhanced Uptake in a Nanohybrid Form of Porous Magnesium Borohydride Sohee Jeong, Phillip J Milner, Liwen F Wan, Yi‐Sheng Liu, Julia Oktawiec, Edmond W Zaia, Alexander C Forse, Noemi Leick, Thomas Gennett, Jinghua Guo, David Prendergast, Jeffrey R Long, Jeffrey J Urban, Advanced Materials 31, 1904252 (2019).[abstract]

165. Efficient Hydrogen Production from Methanol Using A Single-Site Pt1/CeO2 Catalyst Lu-Ning Chen, Kai-Peng Hou, Yi-Sheng Liu, Zhi-Yuan Qi, Qi Zheng, Yi-Hsien Lu, Jia-Yu Chen, Jeng-Lung Chen, Chih-Wen Pao, Shuo-Bo Wang, Yao-Bin Li, Shao-Hua Xie, Fu-Dong Liu, David Prendergast, Leonard E Klebanoff, Vitalie Stavila, Mark D Allendorf, Jinghua Guo, Lan-Sun Zheng, Ji Su, Gabor A Somorjai, J. Am. Chem. Soc. 141, 17995 (2019).[abstract]

164. Design Rules for Membranes from Polymers of Intrinsic Microporosity for Crossover-free Aqueous Electrochemical Devices Miranda J Baran, Miles N Braten, Swagat Sahu, Artem Baskin, Stephen M Meckler, Longjun Li, Lorenzo Maserati, Mark E Carrington, Yet-Ming Chiang, David Prendergast, Brett A Helms, Joule 3, 1 (2019).[abstract]

163. A combined multi-reference pump-probe simulation method with application to XUV signatures of ultrafast methyl iodide photodissociation Han Wang, Michael Odelius, David Prendergast, J. Chem. Phys. 151, 124106 (2019).[abstract]

162. Probing ultrafast C–Br bond fission in the UV photochemistry of bromoform with core-to-valence transient absorption spectroscopy Benjamin W Toulson, Mario Borgwardt, Han Wang, Florian Lackner, Adam S Chatterley, CD Pemmaraju, Daniel M Neumark, Stephen R Leone, David Prendergast, Oliver Gessner, Structural Dynamics 6, 054304 (2019).[abstract]

161. Taming Convergence in the Determinant Approach for X-Ray Excitation Spectra Yufeng Liang, David Prendergast, Phys. Rev. B 100, 075121 (2019).[abstract]

160. “Ion Solvation Spectra”: Free Energy Analysis of Solvation Structures of Multivalent Cations in Aprotic Solvents Artem Baskin, David Prendergast, J. Phys. Chem. Lett. 10, 4920 (2019).[abstract]

159. Evidence of a second-order Peierls-driven metal-insulator transition in crystalline NbO2 Matthew J Wahila, Galo Paez, Christopher N Singh, Anna Regoutz, Shawn Sallis, Mateusz J Zuba, Jatinkumar Rana, M Brooks Tellekamp, Jos E Boschker, Toni Markurt, Jack EN Swallow, Leanne AH Jones, Tim D Veal, Wanli Yang, Tien-Lin Lee, Fanny Rodolakis, Jerzy T Sadowski, David Prendergast, Wei-Cheng Lee, W Alan Doolittle, Louis FJ Piper, Phys. Rev. Materials 3, 074602 (2019).[abstract]

158. Infrared Nanospectroscopy at the Graphene–Electrolyte Interface Yi-Hsien Lu, Jonathan M Larson, Artem Baskin, Xiao Zhao, Paul D Ashby, David Prendergast, Hans A Bechtel, Robert Kostecki, Miquel Salmeron, Nano Lett. 19, 5388 (2019).[abstract]

157. Direct observation of delithiation as the origin of analog memristance in LixNbO2 Sebastian A. Howard, Christopher N. Singh, Galo J. Paez, Matthew J. Wahila, Linda W. Wangoh, Shawn Sallis, Keith Tirpak, Yufeng Liang, David Prendergast, Mateusz Zuba, Jatinkumar Rana, Alex Weidenbach, Timothy M McCrone, Wanli Yang, Tien-Lin Lee, Fanny Rodolakis, William Doolittle, Wei-Cheng Lee, Louis FJ Piper, APL Materials 7, 071103 (2019).[abstract]

156. Graphene/h-BN In-Plane Heterostructures: Stability and Electronic and Transport Properties Regiane Nascimento, Elizane E Moraes, Matheus JS Matos, David Prendergast, Taise M Manhabosco, Alan B de Oliveira, Helio Chacham, Ronaldo JC Batista, J. Phys. Chem. C 123, 18600 (2019).[abstract]

155. The purported square ice in bilayer graphene is a nanoscale, monolayer object Tod A. Pascal, Craig P. Schwartz, Keith V. Lawler, and David Prendergast, J. Chem. Phys. 150, 231101 (2019).[abstract]

154. Identifying Catalytic Active Sites of Trimolybdenum Phosphide (Mo3P) for Electrochemical Hydrogen Evolution Alireza Kondori Mohammadreza Esmaeilirad Artem Baskin Boao Song Jialiang Wei Wei Chen Carlo U. Segre Reza Shahbazian‐Yassar David Prendergast Mohammad Asadi, Adv. Energy Mater. 1900516 (2019).[abstract]

153. Edge-functionalized graphene nanoribbon encapsulation to enhance stability and control kinetics of hydrogen storage materials Liwen F. Wan, Eun Seon Cho, Tomas Marangoni, Patrick Shea, ShinYoung Kang, Cameron Rogers, Edmond Zaia, Ryan R. Cloke, Brandon C. Wood, Felix R. Fischer, Jeffrey J. Urban, and David Prendergast, Chem. Mater. 31, 2960 (2019).[abstract]

152. Electronic Structure and Performance Bottlenecks of CuFeO2 Photocathodes Chang-Ming Jiang, Sebastian E. Reyes-Lillo, Yufeng Liang, Yi-Sheng Liu, Guiji Liu, Francesca M. Toma , David Prendergast, Ian D. Sharp, and Jason K. Cooper, Chem. Mater. 31, 2524 (2019).[abstract]

151. Understanding the effect of thionation on naphthalene diimide using first-principles predictions of near-edge x-ray absorption fine structure spectra Kira Rundel, Yufeng Liang, Adam Welford, David Prendergast, Christopher R. McNeill, J. Chem. Phys. 150, 104302 (2019).[abstract]

150. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides Jihyun Hong, William E. Gent, Penghao Xiao, Kipil Lim, Dong-Hwa Seo, Jinpeng Wu, Peter M. Csernica, Christopher J. Takacs, Dennis Nordlund, Cheng-Jun Sun, Kevin H. Stone, Donata Passarello, Wanli Yang, David Prendergast, Gerbrand Ceder, Michael F. Toney, William C. Chueh, Nature Materials 18, 256 (2019).[abstract]

149. Adsorption behavior of organic molecules: a study of benzotriazole on Cu (111) with spectroscopic and theoretical methods Chiara Gattinoni, Panayiotis Tsaousis, Chanan Euaruksakul, Rachel Price, David A Duncan, Tod Pascal, David Prendergast, Georg Held, Angelos Michaelides, Langmuir 35, 882 (2019).[abstract]

148. Identifying the Role of Dynamic Surface Hydroxides in the Dehydrogenation of Ti-doped NaAlH4. James L. White, Andrew J. E. Rowberg, Liwen Wan, ShinYoung Kang, Tadashi Ogitsu, Robert D. Kolasinski, Josh A. Whaley, Alexander Baker, Jonathan Richard Ian Lee, Yi-Sheng Liu, Lena Trotochaud, Jinghua Guo, Vitalie Stavila, David Prendergast, Hendrik Bluhm, Mark D. Allendorf, Brandon C. Wood, and Farid El Gabaly, ACS Appl. Mater. Interfaces 11, 4930 (2019).[abstract]

147. Exploring chemical speciation at electrified interfaces using detailed continuum models. Artem Baskin and David Prendergast, J. Chem. Phys. 150, 041725 (2019).[abstract]


146. Probing the electric field-induced doping mechanism in YBa2Cu3O7 using computed Cu K-edge x-ray absorption spectra Roberta Poloni, A. Lorenzo Mariano, David Prendergast, and Javier Garcia-Barriocanal J. Chem. Phys. 149, 234706 (2018).[abstract]

145. Cooperative adsorption of carbon disulfide in diamine-appended metal–organic frameworks. C. Michael McGuirk, Rebecca L. Siegelman, Walter S. Drisdell, Tomce Runcevski, Phillip J. Milner, Julia Oktawiec, Liwen F. Wan, Gregory M. Su, Henry Z. H. Jiang, Douglas A. Reed, Miguel I. Gonzalez, David Prendergast and Jeffrey R. Long, Nature Comms. 9, 5133 (2018).[abstract]

144. Molecular-Scale Structure of Electrode–Electrolyte Interfaces: The Case of Platinum in Aqueous Sulfuric Acid. Cheng Hao Wu, Tod A. Pascal, Artem Baskin, Huixin Wang, Hai-Tao Fang, Yi-Sheng Liu, Yi-Hsien Lu, Jinghua Guo, David Prendergast, and Miquel B. Salmeron, J. Am. Chem. Soc. 140, 16237 (2018).[abstract]

143. Fundamental understanding of chemical processes in extreme ultraviolet resist materials. Oleg Kostko, Bo Xu, Musahid Ahmed, Daniel S. Slaughter, D. Frank Ogletree, Kristina D. Closser, David Prendergast, Patrick Naulleau, Deirdre L. Olynick, Paul D. Ashby, Yi Liu, William D. Hinsberg, and Gregory M. Wallraff J. Chem. Phys. 149, 154305 (2018).[abstract]

142. Nanostructured Metal Hydrides for Hydrogen Storage. Andreas Schneemann, James L. White, ShinYoung Kang, Sohee Jeong, Liwen F. Wan, Eun Seon Cho, Tae Wook Heo, David Prendergast, Jeffrey J. Urban, Brandon C. Wood, Mark D. Allendorf, and Vitalie Stavila, Chem. Rev. 118, 10775 (2018).[abstract]

141. Imaging Unstained Synthetic Polymer Crystals and Defects on Atomic Length Scales Using Cryogenic Electron Microscopy. Xi Jiang, Douglas R Greer, Joyjit Kundu, Colin Ophus, Andrew M Minor, David Prendergast, Ronald N Zuckermann, Nitash P Balsara, Kenneth H Downing, Macromolecules 51, 7794 (2018).[abstract]

140. Hybrid DFT investigation of the energetics of Mg ion diffusion in α-MoO3. Taylor Barnes, Liwen Wan, Paul Kent, David Prendergast, Phys. Chem. Chem. Phys. 20, 24877 (2018).[abstract]

139. Determination of Redox Reaction Mechanisms in Lithium–Sulfur Batteries. Kevin H Wujcik, Dunyang R Wang, Alexander A Teran, Eduard Nasybulin, Tod A Pascal, David Prendergast, Nitash P Balsara, Chap. 3 in Electrochemical Engineering: From Discovery to Product, Advances in Electrochemical Sciences and Engineering, Eds. Richard C. Alkire, Philip N. Bartlett, Marc Koper, published by John Wiley & Sons (2018). [abstract]

138. Critical Factors in Computational Characterization of Hydrogen Storage in Metal-Organic Frameworks. Jeffrey S. Camp, Vitalie Stavila, Mark D. Allendorf, David Prendergast, and Maciej Haranczyk, J. Phys. Chem. C 122, 18957 (2018).[abstract]

137. Solution-Based, Template-Assisted Realization of Large-Scale Graphitic ZnO. Kyle B Tom, Shuren Lin, Liwen F Wan, Jie Wang, Nolan Ahlm, Alpha T N’Diaye, Karen Bustillo, Junwei Huang, Yin Liu, Shuai Lou, Rui Chen, Shancheng Yan, Hui Wu, Dafei Jin, Hongtao Yuan, David Prendergast, Jie Yao, ACS Nano 12, 7554 (2018).[abstract]

136. Cooperative Gas Adsorption without a Phase Transition in Metal-Organic Frameworks. Joyjit Kundu, Jurgen F. Stilck, Jung-Hoon Lee, Jeffrey B. Neaton, David Prendergast, and Stephen Whitelam, Physical Review Letters 121, 015701 (2018).[abstract]

135. Ab initio modeling of nonequilibrium electron-ion dynamics of iron in the warm dense matter regime. T. Ogitsu, A. Fernandez-Panella, S. Hamel, A. A. Correa, D. Prendergast, C. D. Pemmaraju, and Y. Ping, Physical Review B 97, 214203 (2018).[abstract]

134. Quantum many-body effects in x-ray spectra efficiently computed using a basic graph algorithm. Yufeng Liang and David Prendergast, Physical Review B 97, 205127 (2018).[abstract]

133. Two-photon absorption of soft X-ray free electron laser radiation by graphite near the carbon K-absorption edge. Royce K. Lam, Sumana L. Raj, Tod A. Pascal, C.D. Pemmaraju, Laura Foglia, Alberto Simoncig, Nicola Fabris, Paolo Miotti, Christopher J. Hull, Anthony M. Rizzuto, Jacob W. Smith, Riccardo Mincigrucci, Claudio Masciovecchio, Alessandro Gessini, Giovanni De Ninno, Bruno Diviacco, Eleonore Roussel, Simone Spampinati, Giuseppe Penco, Simone Di Mitri, Mauro Trovò, Miltcho B. Danailov, Steven T. Christensen, Dimosthenis Sokaras, Tsu-Chien Weng, Marcello Coreno, Luca Poletto, Walter S. Drisdell, David Prendergast, Luca Giannessi, Emiliano Principi, Dennis Nordlund, Richard J. Saykally, Craig P. Schwartz, Chemical Physics Letters 703C, 112 (2018).[abstract]

132. Mapping Catalytically Relevant Edge Electronic States of MoS2. Abhishek Parija, Yun-Hyuk Choi, Zhuotong Liu, Justin L Andrews, Luis R De Jesus, Sirine C Fakra, Mohammed Al-Hashimi, James D Batteas, David Prendergast, Sarbajit Banerjee, ACS Central Science 4, 493 (2018).[abstract]

131. Aqueous vs Nonaqueous Zn-Ion Batteries: Consequences of the Desolvation Penalty at the Interface. Dipan Kundu, Shahrzad Hosseini Vajargah, Liwen F Wan, Brian Adams, David Prendergast and Linda Nazar, Energy Environ. Sci., 11, 881 (2018).[abstract]

130. Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set. C.D.Pemmaraju, F.D.Vila, J.J.Kas, S.A.Sato, J.J.Rehr, K. Yabana, David Prendergast, Computer Physics Communications, 226, 30 (2018).[abstract]

129. Reversible Mg-ion insertion in a metastable one-dimensional polymorph of V2O5. Justin L. Andrews, Arijita Mukherjee, Hyun Deog Yoo, Abhishek Parija, Peter M. Marley, Sirine Fakra, David Prendergast, Jordi Cabana, Robert F. Klie, Sarbajit Banerjee, Chem 4, 564 (2018).[abstract]

128. Dual roles of f electrons in mixing Al 3p character into d-orbital conduction bands for lanthanide and actinide dialuminides. Alison B. Altman, C. D. Pemmaraju, Selim Alayoglu, John Arnold, Eric D. Bauer, Corwin H. Booth, Zachary Fisk, Joseph I. Pacold, David Prendergast, David K. Shuh, Tolek Tyliszczak, Jian Wang, and Stefan G. Minasian, Phys. Rev. B 97, 045110 (2018).[abstract]

127. Universal Relationship between Molecular Structure and Crystal Structure in Peptoid Polymers and Prevalence of the cis Backbone Conformation. Douglas R. Greer, Michael A. Stolberg, Joyjit Kundu, Ryan K. Spencer, Tod Pascal, David Prendergast, Nitash P. Balsara, and Ronald N. Zuckermann, J. Am. Chem. Soc. 140, 827 (2018).[abstract]

126. Soft X-ray Second Harmonic Generation as an Interfacial Probe. R. K. Lam, S. L. Raj, T. A. Pascal, C. D. Pemmaraju, L. Foglia, A. Simoncig, N. Fabris, P. Miotti, C. J. Hull, A. M. Rizzuto, J. W. Smith, R. Mincigrucci, C. Masciovecchio, A. Gessini, E. Allaria, G. De Ninno, B. Diviacco, E. Roussel, S. Spampinati, G. Penco, S. Di Mitri, M. Trovo, M. Danailov, S. T. Christensen, D. Sokaras, T.-C. Weng, M. Coreno, L. Poletto, W. S. Drisdell, D. Prendergast, L. Giannessi, E. Principi, D. Nordlund, R. J. Saykally, and C. P. Schwartz, Phys. Rev. Lett. 120, 023901 (2018).[abstract]

125. Integrating Ab Initio Simulations and X-ray Photoelectron Spectroscopy: Toward A Realistic Description of Oxidized Solid/Liquid Interfaces. Tuan Anh Pham, Xueqiang Zhang, Brandon C. Wood, David Prendergast, Sylwia Ptasinska, and Tadashi Ogitsu, J. Phys. Chem. Lett. 9, 194 (2018).[abstract]

124. Ion-Pair Dissociation on α-MoO3 Surfaces: Focus on the Electrolyte–Cathode Compatibility Issue in Mg Batteries. Liwen F. Wan and David Prendergast, J. Phys. Chem. C, 122, 398 (2018).[abstract]


123. Strain and bond length dynamics upon growth and transfer of graphene by NEXAFS spectroscopy from first principles and experiment. Wudmir Yudy Rojas, Allen Douglas Winter, James Gerard Grote, Steve S. Kim, Rajesh R. Naik, Adrienne D. Williams, Conan Weiland, Edward Principe, Daniel A. Fischer, Sarbajit Banerjee, David Prendergast, and Eva M. Campo, Langmuir 34, 1783 (2017).[abstract]

122. Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes. Longjun Li, Tod A. Pascal, Justin G. Connell, Frank Y. Fan, Stephen M. Meckler, Lin Ma, Yet-Ming Chiang, David Prendergast and Brett A. Helms, Nature Comms. 8, 2277 (2017).[abstract]

121. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. William E. Gent, Kipil Lim, Yufeng Liang, Qinghao Li, Taylor Barnes, Sung-Jin Ahn, Kevin H. Stone, Mitchell McIntire, Jihyun Hong, Jay Hyok Song, Yiyang Li, Apurva Mehta, Stefano Ermon, Tolek Tyliszczak, David Kilcoyne, David Vine, Jin-Hwan Park, Seok-Kwang Doo, Michael F. Toney, Wanli Yang, David Prendergast and William C. Chueh, Nature Comms. 8, 2091 (2017).[abstract]

120. Mitigating Cation Diffusion Limitations and Intercalation-Induced Framework Transitions in a 1D Tunnel-Structured Polymorph of V2O5. Gregory A. Horrocks, Abhishek Parija, Luis R. De Jesus, Linda Wangoh, Shawn Sallis, Yuting Luo, Justin L. Andrews, Joshua Jude, Cherno Jaye, Daniel A. Fischer, David Prendergast, Louis F. J. Piper, and Sarbajit Banerjee, Chem. Mater. 29, 10386 (2017).[abstract]

119. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Xueli Zheng, Bo Zhang, Phil De Luna, Yufeng Liang, Riccardo Comin, Oleksandr Voznyy, Lili Han, F. Pelayo Garcia de Arquer, Min Liu, Cao Thang Dinh, Tom Regier, James Dynes, Sisi He, Huolin L. Xin, Huisheng Peng, David Prendergast, Xiwen Du and Edward H. Sargent, Nature Chem. 10, 149 (2018).[abstract]

118. Instability at the Electrode/Electrolyte Interface Induced by Hard Cation Chelation and Nucleophilic Attack. Yi Yu, Artem Baskin, Carlos Valero-Vidal, Nathan T. Hahn, Qiang Liu, Kevin R. Zavadil, Bryan W. Eichhorn, David Prendergast, and Ethan J. Crumlin, Chem. Mater. 29, 8504 (2017).[abstract]

117. Benchmark results and theoretical treatments for valence-to-core x-ray emission spectroscopy in transition metal compounds. D. R. Mortensen, G. T. Seidler, Joshua J. Kas, Niranjan Govind, Craig P. Schwartz, Sri Pemmaraju, and David G. Prendergast, Phys. Rev. B 96, 125136 (2017).[abstract]

116. Atomically-thin interfacial suboxide key to hydrogen storage performance enhancements of magnesium nanoparticles encapsulated in reduced graphene oxide. Liwen F. Wan, Yi-Sheng Liu, Eun Seon Cho, Jason D. Forster, Sohee Jeong, Hsiao-Tsu Wang, Jeffrey J. Urban, Jinghua Guo, and David Prendergast, Nano Lett. 17, 5540 (2017).[abstract]

115. Monitoring Deformation in Graphene Through Hyperspectral Synchrotron Spectroscopy to Inform Fabrication. Allen Douglas Winter, Wudmir Y Rojas, Adrienne D Williams, Steve S Kim, Fahima Ouchen, Daniel A Fischer, Conan Weiland, Edward Principe, Sarbajit Banerjee, Chuong Huynh, Rajesh R Naik, Yijin Liu, Apurva Mehta, James Grote, David Prendergast, Eva M Campo, J. Phys. Chem. C 121, 15653 (2017) [abstract]

114. Evaluation of Multivalent Cation Insertion in Single- and Double-Layered Polymorphs of V2O5. Abhishek Parija, David Prendergast, and Sarbajit Banerjee, ACS Appl. Mater. Interfaces, 9, 23756 (2017).[abstract]

113. Improving Continuum Models to Define Practical Limits for Molecular Models of Electrified Interfaces. Artem Baskin and David Prendergast, J. Electrochem. Soc. 164, E3438 (2017).[abstract]

112. Ultrafast carrier thermalization and trapping in silicon-germanium alloy probed by extreme ultraviolet transient absorption spectroscopy. Michael Zurch, Hung-Tzu Chang, Peter M. Kraus, Scott K. Cushing, Lauren J. Borja, Andrey Gandman, Christopher J. Kaplan, Myoung Hwan Oh, James S. Prell, David Prendergast, Chaitanya D. Pemmaraju, Daniel M. Neumark, and Stephen R. Leone, Structural Dynamics 4, 044029 (2017).[abstract]

111. Temperature and Radiation Effects at the Fluorine K-edge in LiF. Craig P. Schwartz, Francisco Ponce, Stephan Friedrich, Stephen P. Cramer, John Vinson, David Prendergast, Journal of Electron Spectroscopy and Related Phenomena 218, 30 (2017).[abstract]

110. Chemical and Morphological Inhomogeneity of Aluminum Metal and Oxides from Soft X-ray Spectromicroscopy. Alison B. Altman, C. Das Pemmaraju, Selim Alayoglu, John Arnold, Corwin H. Booth, Augustin Braun, Christopher E. Bunker, Alexandre Herve, Stefan G. Minasian, David Prendergast, David K. Shuh, and Tolek Tyliszczak, Inorg. Chem. 56, 5710 (2017).[abstract]

109. The importance of inner-shell electronic structure for enhancing the EUV absorption of photoresist materials. Kristina D Closser, D Frank Ogletree, Patrick Naulleau, David Prendergast, J. Chem. Phys. 146, 164106 (2017).[abstract]

108. First-Principles Predictions of Near-Edge X-ray Absorption Fine Structure Spectra of Semiconducting Polymers. Gregory M. Su, Shrayesh N. Patel, C. D. Pemmaraju, David Prendergast, and Michael L. Chabinyc, J. Phys. Chem. C, 121, 9142 (2017).[abstract]

107. Determining Atomic-scale Structure and Composition of Organo-lead Halide Perovskites by Combining High-resolution X-ray Absorption Spectroscopy and First-principles Calculations. Walter S. Drisdell, Linn Leppert, Carolin M. Sutter-Fella, Yufeng Liang, Yanbo Li, Quynh P. Ngo, Liwen F. Wan, Sheraz Gul, Thomas Kroll, Dimosthenis Sokaras, Ali Javey, Junko Yano, Jeffrey B. Neaton, Francesca M. Toma, David Prendergast, and Ian D. Sharp, ACS Energy Lett. 2, 1183 (2017).[abstract]

106. Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction. Andrew R. Attar, Aditi Bhattacherjee, C. D. Pemmaraju, Kirsten Schnorr, Kristina D. Closser, David Prendergast, Stephen R. Leone, Science 356, 54 (2017).[abstract]

105. Coordination characteristics of uranyl BBP complexes: insights from an electronic structure analysis. C. D. Pemmaraju, Roy Copping, Danil E. Smiles, David K. Shuh, Niels Gronbech-Jensen, David Prendergast, and Andrew Canning, ACS Omega 2, 1055 (2017).[abstract]

104. Liquid Sulfur Impregnation of Microporous Carbon Accelerated by Nanoscale Interfacial Effects. Tod A. Pascal, Irune Villaluenga, Kevin H. Wujcik, Didier Devaux, Xi Jiang, Dunyang Rita Wang, Nitash Balsara, and David Prendergast, Nano Lett. 17, 2517 (2017).[abstract]

103. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory. Yufeng Liang, John Vinson, S. C. Pemmaraju, Walter S. Drisdell, Eric L. Shirley, David Prendergast, Phys. Rev. Lett. 118, 096402 (2017).[abstract]

102. Determining crystal phase purity in c-BP through X-ray absorption spectroscopy. S. P. Huber, V. V. Medvedev, E. Gullikson, B. Padavala, J. H. Edgar, R. W. E. van de Kruijs, F. Bijkerk, and D. Prendergast, Phys. Chem. Chem. Phys. 19, 8174 (2017).[abstract]

101. Improved treatment of exact exchange in Quantum ESPRESSO. Taylor A. Barnes, Thorsten Kurth, Pierre Carrier, Nathan Wichmann, David Prendergast, Paul R. C. Kent, Jack Deslippe, Comp. Phys. Comm. 214, 52 (2017).[abstract]

100. Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries. Sean E. Doris, Ashleigh L. Ward, Artem Baskin, Peter D. Frischmann, Nagarjuna Gavvalapalli, Etienne Chénard, Christo S. Sevov, David Prendergast, Jeffrey S. Moore, Brett A. Helms, Angew. Chem. Int. Ed. 56, 1 (2017).[abstract]

99. Thermodynamic Origins of the Solvent-Dependent Stability of Lithium Polysulfides from First Principles. Tod A Pascal, Kevin Wujcik, Dunyang Rita Wang, Nitash P Balsara and David Prendergast, Phys. Chem. Chem. Phys. 19, 1441 (2017).[abstract]

98. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium. Michael Zurch, Hung-Tzu Chang, Lauren J. Borja, Peter M. Kraus, Scott K. Cushing, Andrey Gandman, Christopher J. Kaplan, Myoung Hwan Oh, James S. Prell, David Prendergast, Chaitanya D. Pemmaraju, Daniel M. Neumark and Stephen R. Leone, Nature Communications 8, 15734 (2017).[abstract]


97. Direct observation of ring-opening dynamics in strong-field ionized selenophene using femtosecond inner-shell absorption spectroscopy. Florian Lackner, Adam S. Chatterley, C. D. Pemmaraju, Kristina D. Closser, David Prendergast, Daniel M. Neumark, Stephen R. Leone, and Oliver Gessner, J. Chem. Phys. 145, 234313 (2016).[abstract]

96. The Formation Time of Ti–O• and Ti–O•–Ti Radicals at the n-SrTiO3/Aqueous Interface during Photocatalytic Water Oxidation. Xihan Chen, Stephanie N. Choing, Daniel J. Aschaffenburg, C. D. Pemmaraju, David Prendergast, and Tanja Cuk, J. Am. Chem. Soc. 139, 1830 (2017).[abstract]

95. In Situ X-ray Absorption Spectroscopy Studies of Discharge Reactions in a Thick Cathode of a Lithium Sulfur Battery. Kevin H. Wujcik, Dunyang Rita Wang, Tod A. Pascal, David Prendergast and Nitash P. Balsara, J. Electrochem. Soc. 164, A18 (2017).[abstract]

94. Exploiting the P L2,3 absorption edge for optics: spectroscopic and structural characterization of cubic boron phosphide thin films. S. P. Huber, V. V. Medvedev, J. Meyer-Ilse, E. Gullikson, B. Padavala, J. H. Edgar, J. M. Sturm, R. W. E. van de Kruijs, D. Prendergast, and F. Bijkerk, Optics Materials Express 6, 3946 (2016).[abstract]

93. Self-healing in B12P2 through Mediated Defect Recombination. S. P. Huber, E. Gullikson, C. D. Frye, J. H. Edgar, R. W. E. van de Kruijs, F. Bijkerk, and D. Prendergast, Chemistry of Materials 28, 8415 (2016).[abstract]

92. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy. Jesse D. Ward, Mark Bowden, C. Tom Resch, Gregory C. Eiden, C.D. Pemmaraju, David Prendergast, Andrew M. Duffin, Spectrochimica Acta Part B 127, 20 (2017).[abstract]

91. Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS). Craig Schwartz, Dennis Nordlund, Dimosthenis Sokaras, Miguel Contreras, Tsu-Chien Weng, Lorelle Mansfield, Katherine E Hurst, Arrelaine Dameron, Kannan Ramanathan, David Prendergast, Steven T Christensen, Solar Energy Materials and Solar Cells 160, 390 (2017).[abstract]

90. Vanadium K-Edge X-ray Absorption Spectroscopy as a Probe of the Heterogeneous Lithiation of V2O5: First-Principles Modeling and Principal Component Analysis. Gregory A. Horrocks, Erick J. Braham, Yufeng Liang, Luis R. De Jesus, Joshua Jude, Jesús M. Velázquez, David Prendergast, and Sarbajit Banerjee, J. Phys. Chem. C 120, 23922 (2016).[abstract]

89. Building a fast lane for Mg diffusion in α-MoO3 by fluorine doping. Liwen F. Wan, Jared T. Incorvati, Kenneth R. Poeppelmeier, and David Prendergast, Chem. Mater. 28, 6900 (2016).[abstract]

88. Combining theory and experiment for X-ray absorption spectroscopy and resonant X-ray scattering characterization of polymers. G.M. Su, I.A. Cordova, M.A. Brady, D. Prendergast, C. Wang, Polymer 99, 782 (2016).[abstract]

87. Lithium Polysulfide Radical Anions in Ether-Based Solvents. Kevin H. Wujcik, Dunyang Rita Wang, Aditya Raghunathan†, Melanie Drake, Tod A. Pascal, David Prendergast, and Nitash P. Balsara, J. Phys. Chem. C 120, 18403 (2016).[abstract]

86. Topochemically De-Intercalated Phases of V2O5 as Cathode Materials for Multivalent Intercalation Batteries: A First-Principles Evaluation. Abhishek Parija, Yufeng Liang, Justin Andrews, Luis R. De Jesus, David Prendergast, and Sarbajit Banerjee, Chem. Mater. 28, 5611 (2016).[abstract]

85. Selective gas capture via kinetic trapping. Joyjit Kundu, Tod Pascal, David Prendergast, and Stephen Whitelam, Phys. Chem. Chem. Phys. 18, 21760 (2016).[abstract]

84. Mapping polaronic states and lithiation gradients in individual V2O5 nanowires. Luis R. De Jesus, Gregory A. Horrocks, Yufeng Liang, Abhishek Parija, Cherno Jaye, Linda Wangoh, Jian Wang, Daniel A. Fischer, Louis F. J. Piper, David Prendergast and Sarbajit Banerjee, Nature Communications 7, 12022 (2016).[abstract]

83. Revealing electronic structure changes in Chevrel phase cathodes upon Mg insertion using X-ray absorption spectroscopy. Liwen F. Wan, Joshua Wright, Brian R. Perdue, Timothy T. Fister, Soojeong Kim, Christopher A. Apblett, and David Prendergast, Phys. Chem. Chem. Phys. 18, 17326 (2016).[abstract]

82. Tuning electronic properties of graphene heterostructures by amorphous-to-crystalline phase transitions. S. Kulju, J. Akola, D. Prendergast, and R. O. Jones, Phys. Rev. B 93, 195443 (2016).[abstract]

81. Understanding and control of bipolar self-doping in copper nitride. Angela N. Fioretti, Craig P. Schwartz, John Vinson, Dennis Nordlund, David Prendergast, Adele C. Tamboli, Christopher M. Caskey, Filip Tuomisto, Florence Linez, Steven T. Christensen, Eric S. Toberer, Stephan Lany and Andriy Zakutayev, J. Appl. Phys. 119, 181508 (2016).[abstract]

80. Extreme ultraviolet transient absorption of solids from femtosecond to attosecond timescales. Lauren J. Borja, M. Zürch, C. D. Pemmaraju, Martin Schultze, Krupa Ramasesha, Andrey Gandman, James S. Prell, David Prendergast, Daniel M. Neumark, and Stephen R. Leone, Journal of the Optical Society of America B 33, C57 (2016).[abstract]

79. Detecting the oxyl radical of photocatalytic water oxidation at an n-SrTiO3/aqueous interface through its subsurface vibration. David M. Herlihy, Matthias M. Waegele, Xihan Chen, C. D. Pemmaraju, David Prendergast, Tanja Cuk, Nature Chemistry 8, 549 (2016).[abstract]

78. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures. Christopher M. Caskey, Aaron Holder, Sarah Shulda, Steven T. Christensen, David Diercks, Craig P. Schwartz, David Biagioni, Dennis Nordlund, Alon Kukliansky, Amir Natan, David Prendergast, Bernardo Orvananos, Wenhao Sun, Xiuwen Zhang, Gerbrand Ceder, David S. Ginley, William Tumas, John D. Perkins, Vladan Stevanovic, Svitlana Pylypenko, Stephan Lany, Ryan M. Richards and Andriy Zakutayev, J. Chem. Phys. 144, 144201 (2016).[abstract]

77. Electronic structure study of the CdS buffer layer in CIGS solar cells by X-ray Absorption Spectroscopy: Experiment and Theory. Craig Schwartz, Dennis Nordlund, Tsu-Chien Weng, Dimosthenis Sokaras, Lorelle Mansfield, Aditi S. Krishnapriyan, Kannan Ramanathan, Katherine Hurst, David Prendergast, Steven T. Christensen, Sol. Energy Mater. Sol. Cells 149, 275 (2016).[abstract]

76. Exploration of the Detailed Conditions for Reductive Stability of Mg(TFSI)2 in Diglyme: Implications for Multivalent Electrolytes. A. Baskin and D. Prendergast, J. Phys. Chem. C 120, 3583 (2016).[abstract]

75. Measurement of Electron-Ion Relaxation in Warm Dense Copper. B. I. Cho, T. Ogitsu, K. Engelhorn, A. A. Correa, Y. Ping, J. W. Lee, L. J. Bae, D. Prendergast, R. W. Falcone, and P. A. Heimann Sci. Rep. 6, 18843 (2016).[abstract]

74. Reversible Magnesium Intercalation into a Layered Oxyfluoride Cathode. Jared T. Incorvati, Liwen F. Wan, Baris Key, Dehua Zhou, Chen Liao, Lindsay Fuoco, Michael Holland, Hao Wang, David Prendergast, Kenneth R. Poeppelmeier, and John T. Vaughey, Chem. Mater. 28, 17 (2016).[abstract]


73. Oxygen-stabilized triangular defects in hexagonal boron nitride. S. P. Huber, E. Gullikson, R. W. E. van de Kruijs, F. Bijkerk, and D. Prendergast, Phys. Rev. B 92, 245310 (2015).[abstract]

72. NEXAFS Spectroscopy Reveals the Molecular Orientation in Blade-Coated Pyridal[2,1,3]thiadiazole-Containing Conjugated Polymer Thin Films. Shrayesh N. Patel, Gregory M. Su, Chan Luo, Ming Wang, Louis A. Perez, Daniel A. Fischer, David Prendergast, Guillermo C. Bazan, Alan J. Heeger, Michael L. Chabinyc, and Edward J. Kramer, Macromolecules 48, 6606 (2015).[abstract]

71. On the difficulty of reproducibly measuring PbCl2 X-ray absorption spectra. Craig P. Schwartz and David Prendergast, J. Chem. Phys. 143, 111102 (2015).[abstract]

70. Efficient implementation of core-excitation Bethe-Salpeter equation calculations. K. Gilmore, John Vinson, E.L. Shirley, D. Prendergast, C.D. Pemmaraju, J.J. Kas, F.D. Vila, J.J. Rehr, Comp. Phys. Comm. 197, 109 (2015).[abstract]

69. Properties of aqueous nitrate and nitrite from x-ray absorption spectroscopy. Jacob W. Smith, Royce K. Lam, Orion Shih, Anthony M. Rizzuto, David Prendergast, and Richard J. Saykally, J. Chem. Phys. 143, 084503 (2015).[abstract]

68. Mg desolvation and intercalation mechanism at the Mo6S8 Chevrel phase surface. Liwen F. Wan, Brian R. Perdue, Christopher A. Apblett, and David Prendergast, Chem. Mater. 27, 5932 (2015).[abstract]

67. Re-examining the Chevrel phase Mo6S8 cathode for Mg intercalation from an electronic structure perspective. Florian Thoele, Liwen F. Wan and David Prendergast, Phys. Chem. Chem. Phys. 17, 22548 (2015).[abstract]

66. Polysulfide-Blocking Microporous Polymer Membrane Tailored for Hybrid Li-Sulfur Flow Batteries. Changyi Li, Ashleigh L. Ward, Sean E. Doris, Tod A. Pascal, David Prendergast, and Brett A. Helms, Nano Lett. 15, 5724 (2015).[abstract]

65. Theory and X‑ray Absorption Spectroscopy for Aluminum Coordination Complexes − Al K‑Edge Studies of Charge and Bonding in (BDI)Al, (BDI)AlR2, and (BDI)AlX2 Complexes. Alison B. Altman, C. D. Pemmaraju, Clement Camp, John Arnold, Stefan G. Minasian, David Prendergast, David K. Shuh, and Tolek Tyliszczak, J. Am. Chem. Soc. 137, 10304 (2015).[abstract]

64. Chemically Directing d-Block Heterometallics to Nanocrystal Surfaces as Molecular Beacons of Surface Structure. Evelyn Rosen, Keith Gilmore, April M. Sawvel, Aaron Hammack, Sean E. Doris, Shaul Aloni, Virginia Altoe, Dennis Nordlund, Tsu-Chien Weng, Dimosthenis Sokaras, Bruce E Cohen, Jeffrey J. Urban, D. Frank Ogletree, Delia Milliron, David Prendergast and Brett A Helms, Chem. Sci. 6, 6295 (2015).[abstract]

63. Probing the mechanism of CO2 capture in diamine-appended metal–organic frameworks using measured and simulated X-ray spectroscopy. Walter S. Drisdell, Roberta Poloni, Thomas M. McDonald, Tod A. Pascal, Liwen F. Wan, C. Das Pemmaraju, Bess Vlaisavljevich, Samuel O. Odoh, Jeffrey B. Neaton, Jeffrey R. Long, David Prendergast and Jeffrey B. Kortright, Phys. Chem. Chem. Phys. 17, 21448 (2015).[abstract]

62. Chemical doping enhances electronic transport in networks of hexabenzocoronenes assembled in non-aqueous electrolyte. Laura C. H. Gerber, Peter D. Frischmann, Teresa E. Williams, Martijn Tichelaar, Erica Y. Tsai, Yi-Sheng Liu, Jinghua Guo, C. D. Pemmaraju, David Prendergast and Brett A. Helms, Polym. Chem. 6, 5560 (2015).[abstract]

61. The Hydration Structure of Dissolved Carbon Dioxide from X-Ray Absorption Spectroscopy. Royce K. Lam, Alice H. England, Jacob W. Smith, Anthony M. Rizzuto, Orion Shih, David Prendergast, Richard J. Saykally, Chem. Phys. Lett. 633, 214 (2015).[abstract]

60. Characterization of Polysulfide Radicals Present in an Ether-Based Electrolyte of a Lithium–Sulfur Battery During Initial Discharge Using In Situ X-Ray Absorption Spectroscopy Experiments and First-Principles Calculations. K. H. Wujcik, T. A. Pascal, C. D. Pemmaraju, D. Devaux, W. C. Stolte, N. P. Balsara, D. Prendergast, Adv. Ener. Mat. 5, 1500285 (2015).[abstract]

59. Cooperative Insertion of CO2 in Diamine-Appended Metal-Organic Frameworks. T. M. McDonald, J. A. Mason, X. Kong, E. D. Bloch, D. Gygi, A. Dani, V. Crocella, F. Giordanino, S. O. Odoh, W. Drisdell, B. Vlaisavljevich, A. L. Dzubak, R. Poloni, S. K. Schnell, N. Planas, K. Lee, T. Pascal, L. F. Wan, D. Prendergast, J. B. Neaton, B. Smit, J. B. Kortright, L. Gagliardi, S. Bordiga, J. A. Reimer, J. R. Long, Nature 519, 303 (2015).[abstract]

58. X-ray Spectroscopy as a Probe for Lithium Polysulfide Radicals. Tod A. Pascal, Chaitanya D. Pemmaraju, and David Prendergast, Phys Chem Chem Phys 17, 7743 (2015).[abstract]

57. Potential-Induced Electronic Structure Changes in Supercapacitor Electrodes Observed by In Operando Soft X-Ray Spectroscopy. Michael Bagge-Hansen, Brandon C. Wood, Tadashi Ogitsu, Trevor M. Willey, Ich C. Tran, Arne Wittstock, Monika M. Biener, Matthew D. Merrill, Marcus A. Worsley, Minoru Otani, Cheng-Hao Chuang, David Prendergast, Jinghua Guo, Theodore F. Baumann, Tony van Buuren, Juergen Biener and Jonathan R. I. Lee, Advanced Materials 27, 1512 (2015).[abstract]


56. Attosecond band-gap dynamics in silicon. Martin Schultze, Krupa Ramasesha, C.D. Pemmaraju, S. A. Sato, D. Whitmore, A. Gandman, James S. Prell, L. J. Borja, D. Prendergast, K. Yabana, Daniel M. Neumark, Stephen R. Leone, Science 346, 1348 (2014).[abstract]

55. The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy. Juan-Jesus Velasco-Velez, Cheng Hao Wu, Tod A. Pascal, Liwen F. Wan, Jinghua Guo, David Prendergast, Miquel Salmeron, Science 346, 831 (2014).[abstract]

54. Bonding and charge transfer in nitrogen-donor uranyl complexes: Insights from NEXAFS spectra. C. Das Pemmaraju, Roy Copping, Shuao Wang, Markus Janousch, Simon Teat, Tolek Tyliszczak, Andrew Canning, David Shuh, David Prendergast, Inorg. Chem. 53, 11415 (2014).[abstract]

53. The Solvation Structure of Mg Ions in Dichloro Complex Solutions from First-Principles Molecular Dynamics and Simulated X-ray Absorption Spectra. Liwen F. Wan and David Prendergast J. Am. Chem. Soc. 136, 14456 (2014).[abstract]

52. Experiments and Theory in In-Situ and Operando Soft X-ray Spectroscopy for Energy Storage. Wanli Yang, Jinghua Guo, Ethan Crumlin, David Prendergast, and Zahid Hussain, Synchr. Rad. News 27, 5 (2014). [abstract]

51. The Hydration Structure of Aqueous Carbonic Acid from X-ray Absorption Spectroscopy. Royce K.-J. Lam, Alice H. England, Alex Thomas Sheardy, Orion Shih, Jacob W. Smith, Anthony Melkior Rizzuto, David Prendergast and R J Saykally, Chem. Phys. Lett. 614, 282 (2014).[abstract]

50. X-Ray Absorption Spectroscopy of LiBF4 in Propylene Carbonate: A Model Lithium Ion Battery Electrolyte. Jacob W. Smith, Royce K.-J. Lam, Alex Thomas Sheardy, Orion Shih, Anthony Melkior Rizzuto, Oleg Borodin, Stephen J Harris, David Prendergast and R J Saykally, Phys. Chem. Chem. Phys. 16, 23568 (2014).[abstract]

49. Atomic Scale Perspective of Ultrafast Charge Transfer at a Dye-Semiconductor Interface. Katrin R. Siefermann, Chaitanya D. Pemmaraju, Stefan Neppl, Andrey Shavorskiy, Amy A. Cordones, Josh Vura-Weis, Daniel S. Slaughter, Felix P. Sturm, Fabian Weise, Hendrik Bluhm, Matthew L. Strader, Hana Cho, Ming-Fu Lin, Camila Bacellar, Champak Khurmi, Jinghua Guo, Giacomo Coslovich, Joseph S. Robinson, Robert A. Kaindl, Robert W. Schoenlein, Ali Belkacem, Daniel M. Neumark, Stephen R. Leone, Dennis Nordlund, Hirohito Ogasawara, Oleg Krupin, Joshua J. Turner, William F. Schlotter, Michael R. Holmes, Marc Messerschmidt, Michael P. Minitti, Sheraz Gul, Jin Z. Zhang, Nils Huse, David Prendergast, and Oliver Gessner, J. Phys. Chem. Lett. 5, 2753 (2014).[abstract]

48. Electrokinetic detection for X-ray spectra of weakly interacting liquids: n-decane and n-nonane. Royce K. Lam, Orion Shih, Jacob W. Smith, Alex T. Sheardy, Anthony M. Rizzuto, David Prendergast, and Richard J. Saykally, J. Chem. Phys. 140, 234202 (2014).[abstract]

47. Fingerprinting Lithium-Sulfur Battery Reaction Products by X-ray Absorption Spectroscopy. Kevin H. Wujcik, Juan Velasco-Velez, Cheng Hao Wu, Tod Pascal, Alexander A. Teran, Matthew A. Marcus, Jordi Cabana, Jinghua Guo, David Prendergast, Miquel Salmeron, and Nitash P. Balsara, J. Electrochem. Soc. 161, A1100 (2014).[abstract]

46. The X-ray absorption spectra of dissolved polysulfides in lithium-sulfur batteries from first-principles. Tod A. Pascal , Kevin Hamilton Wujcik , Juan J. Velasco-Velez , Cheng-Hao Wu , Alexander Andrew Teran , Mukes Kapilashrami , Jordi Cabana , Jinghua Guo , Miquel Salmeron , Nitash P. Balsara , and David G. Prendergast, J. Phys. Chem. Lett., 5, 1547 (2014).[abstract]

45. The Shirley reduced basis: a reduced order model for plane-wave DFT. Maxwell Hutchinson and David Prendergast submitted (March, 2014).[arXiv]

44. Towards equatorial planarity about uranyl: Synthesis and structure of tridentate nitrogen-donor {UO2}2+ complexes. Roy Copping, ByoungSeon Jeon, C. D. Pemmaraju, Shuao Wang, Simon Teat, Markus Janousch, Tolek Tyliszczak, Andrew Canning, Niels Gronbech-Jensen, David Prendergast, David Shuh, Inorg. Chem. 53, 2506 (2014).[abstract]

43. Finite temperature effects on the X-ray absorption spectra of lithium compounds: First-principles interpretation of X-ray Raman measurements. Tod A. Pascal, Ulrike Boesenberg, Robert Kostecki, Thomas J. Richardson, Tsu-Chien Weng, Dimosthenis Sokaras, Dennis Nordlund, Eamon McDermott, Alexander Moewes, Jordi Cabana and David Prendergast, J. Chem. Phys. 140, 034107 (2014).[abstract]


42. Workflows for Computational Scattering Science 2013. Report from the Community Workshop, January 31 – February 2, 2013, California Institute of Technology. Editors in Chief: Brent Fultz, John J. Rehr, Simon J.L. Billinge. Topic Editors: E.E. Alp, S.J.L. Billinge, O. Delaire, B. Fultz, J.Y.Y. Lin, D. Prendergast, T. Proffen, J.J. Rehr, A.D. Rollett, M. Stalzer, S. Vogl. Nov. (2013).[pdf] [website]

41. Probing Adsorption Interactions In Metal-Organic Frameworks Using X-ray Spectroscopy. Walter S. Drisdell, Roberta Poloni, Thomas M. McDonald, Jeffrey R. Long, Berend Smit, Jeffrey B. Neaton, David Prendergast, and Jeffrey B. Kortright, J. Am. Chem. Soc. 139, 035104 (2013).[abstract]

40. Cation-Cation Contact Pairing in Water: Guanidinium. Orion Shih, Alice H. England, Gregory C. Dallinger, Jacob W. Smith, Kaitlin C. Duffey, Ronald C. Cohen, David Prendergast, Richard J. Saykally J. Chem. Phys. 139, 035104 (2013).[abstract]

39. Spectroscopy of Donor-π-Acceptor Porphyrins for Dye-Sensitized Solar Cells. Ioannis Zegkinoglou, Maria-Eleni Ragoussi, C. D. Pemmaraju, Phillip Johnson, David Pickup, Jose Enrique Ortega, David Prendergast, Gema de la Torre, Franz Himpsel, J. Phys. Chem. C 117, 13357 (2013).[abstract]

38. Experimental and theoretical investigation of the electronic structure of Cu2O and CuO thin films on Cu(110) using x-ray photoelectron and absorption spectroscopy. Peng Jiang, David Prendergast, Ferenc Borondics, Soeren Porsgaard, Lisandro Giovanetti, Elzbieta Pach, John Newberg, Hendrik Bluhm, Flemming Besenbacher, and Miquel Salmeron, J. Chem. Phys. 138, 024704 (2013).[abstract]

37. On chemical bonding and electronic structure of graphene-metal contacts. Brian J. Schultz, Cherno Jaye, Daniel A. Fischer, David Prendergast, Patrick S. Lysaght, Sarbajit Banerjee, Chemical Science 4, 494 (2013).[abstract]


36. Phase Transformation and Lithiation Effect on Electronic Structure of LixFePO4: an in-depth Study by Soft X-ray and Simulations. Xiaosong Liu, Jun Liu, Ruimin Qiao, Yan Yu, Hong Li, Liumin Suo, Yongsheng Hu, Yi-De Chuang, Guojiun Shu, Fangcheng Chou, Tsu-Chien Weng, Dennis Nordlund, Dimosthenis Sokaras, Yung Jui Wang, Hsin Lin, Bernardo Barbiellini, Arun Bansil, Xiangyun Song, Zhi Liu, Shishen Yan, Gao Liu, Shan Qiao, Thomas J. Richardson, David Prendergast, Zahid Hussain, Frank M. F. de Groot, Wanli Yang, Journal of the American Chemical Society 134, 13708 (2012).[abstract]

35. Near-Edge X-ray Absorption Fine Structure Spectroscopy Studies of Charge Redistribution at Graphene-Dielectric interfaces. Brian J. Schultz, Vincent Lee, Jimmy Price, Cherno Jaye, Patrick S. Lysaght, Daniel A. Fischer, David Prendergast, Sarbajit Banerjee, Journal of Vacuum Science and Technology B 30, 041205 (2012).[abstract]

34. Ligand-mediated modification of the electronic structure of CdSe quantum dots. Jonathan R. I. Lee, Heather D. Whitley, Robert W. Meulenberg, Abraham Wolcott, Jin. Z. Zhang, David Prendergast, Derek D. Lovingood, Geoffrey F. Strouse, Tadashi Ogitsu, Eric Schwegler, Louis J. Terminello, and Tony van Buuren, Nano Letters 12, 2763 (2012).[abstract]

33. Tuning Semiconductor Band Edge Energies for Solar Photocatalysis via Surface Ligand Passivation. Shenyuan Yang, David Prendergast, and Jeffrey B. Neaton, Nano Letters 12, 383 (2012).[abstract]


32. Algorithm for efficient elastic transport calculations for arbitrary device geometries. Douglas J. Mason, David Prendergast, Jeffrey B. Neaton, and Eric J. Heller, Physical Review B 84, 155401 (2011).[abstract]

31. On the Hydration and Hydrolysis of Carbon Dioxide. Alice H England, Andrew M Duffin, Craig P Schwartz, Janel S Uejio, David Prendergast, Richard J Saykally, Chemical Physics Letters 514, 187 (2011).[abstract]

30. Electronic structure of aqueous borohydride: a potential hydrogen storage medium. Andew M. Duffin, Alice H. England, Craig P. Schwartz, Janel S. Uejio, Gregory C. Dallinger, Orion Shih, David Prendergast, and Richard J. Saykally, Physical Chemistry Chemical Physics 13, 17077 (2011).[abstract]

29. Imaging local electronic corrugations and doped regions in graphene. Brian J. Schultz, Christopher J. Patridge, Vincent Lee, Cherno Jaye, Patrick S. Lysaght, Casey Smith, Joel Barnett, Daniel A. Fischer, David Prendergast, and Sarbajit Banerjee, Nature Communications 2, 372 (2011).[abstract]

28. Electronic structure of warm dense copper studied by ultrafast x-ray absorption spectroscopy. B. I. Cho, K. Engelhorn, A. A. Correa, T. Ogitsu, C. P. Weber, H. J. Lee, J. Feng, P. A. Ni, Y. Ping, A. J. Nelson, D. Prendergast, R. W. Lee, R. W. Falcone, and P. A Heimann, Physical Review Letters 106, 167601 (2011).[abstract]

27. pH-Dependent X-ray Absorption Spectra of Aqueous Boron Oxides. Andrew M. Duffin, Craig P. Schwartz, Alice H. England, Janel S. Uejio, David Prendergast, and Richard J. Saykally, Journal of Chemical Physics 134, 154503 (2011).[abstract]

26. Non-linear Variations in the Electronic Structure of II-VI and III-V Wurtzite Semiconductors with Biaxial Strain. Shenyuan Yang, David Prendergast, and Jeffrey B. Neaton, Applied Physics Letters 98, 152108 (2011).[abstract]


25. Importance of electronic relaxation for intercoulombic decay in aqueous systems. Craig P. Schwartz, Shervin Fatehi, Richard J. Saykally, and David Prendergast, Physical Review Letters 105, 198102 (2010).[abstract]

24. Importance of on-site corrections to the electronic and structural properties of InN in crystalline solid, nonpolar surface, and nanowire forms. A. Terentjevs, A. Catellani, D. Prendergast, and G. Cicero, Physical Review B 82, 165307 (2010).[abstract]

23. Strain-Induced Band Gap Modification in Coherent Core/Shell Nanostructures. Shenyuan Yang, David Prendergast, and Jeffrey B. Neaton, Nano Letters 10, 3156 (2010).[abstract]

22. Investigation of Protein Conformation and Interactions with Salts via X-ray Absorption Spectroscopy. Craig Schwartz, Janel Uejio, Andrew Duffin, Alice England, Daniel Kelly, David Prendergast, and Richard Saykally, Proceedings of the National Academy of Sciences 107, 14008 (2010).[abstract]

21. Local Effects in the X-ray Absorption Spectrum of Salt Water. Heather J. Kulik, Nicola Marzari, Alfredo A. Correa, David Prendergast, Eric Schwegler, and Giulia Galli, Journal of Physical Chemistry B 114, 9594 (2010).[abstract]

20. An analysis of the NEXAFS Spectra of a molecular crystal: α-Glycine. Craig P. Schwartz, Richard J. Saykally, and David Prendergast, Journal of Chemical Physics 133, 044507 (2010).[abstract]

19. Warm dense matter created by isochoric laser heating. Y. Ping, A.A. Correa, T. Ogitsu, E. Draeger, E. Schwegler, T. Ao, K. Widmann, D.F. Price, E. Lee, H. Tam, P.T. Springer, D. Hanson, I. Koslow, D. Prendergast, G. Collins and A. Ng, High Energy Density Physics 6, 246 (2010).[abstract]

18. Monopeptide vs. Monopeptoid: Insights on Structure and Hydration of Aqueous Alanine and Sarcosine via X-Ray Absorption Spectra. Janel S. Uejio, Craig P. Schwartz, Andrew M. Duffin, Alice H. England, David Prendergast, and Richard J. Saykally, Journal of Physical Chemistry B 114, 4702 (2010).[abstract]

17. Nuclear quantum effects in the structure and lineshapes of the N2 near-edge x-ray absorption fine structure spectrum. Shervin Fatehi, Craig P. Schwartz, Richard J. Saykally, and David Prendergast, Journal of Chemical Physics 132, 094302 (2010).[abstract]


16. Bloch-state-based interpolation: An efficient generalization of the Shirley approach to interpolating electronic structure. David Prendergast and Steven G. Louie, Physical Review B 80, 235126 (2009).[abstract]

15. First-principles calculations of solid and liquid aluminum optical absorption spectra near the melting curve: Ambient and high-pressure results. Tadashi Ogitsu, Lorin X. Benedict, Eric Schwegler, Erik W. Draeger, and David Prendergast, Physical Review B 80, 214105 (2009).[abstract]

14. Auto-oligomerization and hydration of pyrrole revealed by x-ray absorption spectroscopy. C. P. Schwartz, J. S. Uejio, A. M. Duffin, A. H. England, D. Prendergast, and R. J. Saykally, Journal of Chemical Physics 131, 114509 (2009).[abstract]

13. On the importance of Nuclear Quantum Motion in Near Edge X-ray Absorption Fine Structure (NEXAFS) Spectroscopy of Molecules. C. P. Schwartz, J. S. Uejio, R. J. Saykally, and D. Prendergast, Journal of Chemical Physics 130, 184109 (2009).[abstract]

12. Electron−Hole Interaction in Carbon Nanotubes: Novel Screening and Exciton Excitation Spectra. J. Deslippe, M. Dipoppa, D. Prendergast, M. V. O. Moutinho, R. B. Capaz and S. G. Louie, Nano Letters 9, 1330 (2009).[abstract]


11. Effects of vibrational motion on core-level spectra of prototype organic molecules. J. S. Uejio, C. P. Schwartz, R. J. Saykally, and D. Prendergast, Chemical Physics Letters 467, 195 (2008).[abstract]

10. Dielectric function of warm dense gold. Y. Ping, D. Hanson, I. Koslow, T. Ogitsu, D. Prendergast, E. Schwegler, G. Collins, and A. Ng, Physics of Plasmas 15, 056303 (2008).[abstract]


9. Bound excitons in metallic single-walled carbon nanotubes. J. Deslippe, C. D. Spataru, D. Prendergast, and S. G. Louie, Nano Letters 7, 1626 (2007).[abstract]

8. Phonon dispersion relations and softening in photoexcited bismuth from first principles. E. D. Murray, S. Fahy, D. Prendergast, T. Ogitsu, D. M. Fritz, D. A. Reis, Physical Review B 75, 184301 (2007).[abstract]

7. Electronic Bonding Transition in Compressed SiO2 Glass. J. F. Lin, H. Fukui, D. Prendergast, T. Okuchi, Y. Q. Cai, N. Hiraoka, C. S. Yoo, A. Trave, P. Eng, M. Y. Hu, P. Chow, Physical Review B 75, 012201 (2007).[abstract]


6. Broadband Dielectric Function of Nonequilibrium Warm Dense Gold. Y. Ping, D. Hanson, I. Koslow, T. Ogitsu, D. Prendergast, E. Schwegler, G. Collins, and A. Ng, Physical Review Letters, Physical Review Letters 96, 255003 (2006).[abstract]

5. X-ray absorption spectra of water from first-principles calculations. David Prendergast and Giulia Galli, Physical Review Letters 96, 215502 (2006).[abstract]


4. The electronic structure of liquid water within density functional theory. David Prendergast, Jeffrey C. Grossman, and Giulia Galli, Journal of Chemical Physics 123, 014501 (2005).[abstract]


3. Optical properties of silicon nanoparticles in the presence of water: A first principles theoretical analysis. David Prendergast, Jeffrey C. Grossman, Andrew J. Williamson, Jean-Luc Fattebert, and Giulia Galli, Journal of the American Chemical Society 126, 13827 (2004).[abstract]


2. Optimization of inhomogeneous electron correlation factors in periodic solids. David Prendergast, David Bevan, and Stephen Fahy, Physical Review B 66, 155104 (2002).[abstract]


1. Impact of electron-electron cusp on Configuration Interaction energies. David Prendergast, M. Nolan, Claudia Filippi, Stephen Fahy, and J. C. Greer, Journal of Chemical Physics 115, 1626 (2001).[abstract]


There are currently no open positions available in the Prendergast Group. We welcome visitors and those with fellowships seeking graduate and postdoctoral positions at the Molecular Foundry. For more information, please contact David Prendergast.