Steve Whitelam

Staff Scientist
Theory of Nanostructured Materials Facility, Molecular Foundry

(510) 495-2769
SWhitelam@lbl.gov


2004 Ph.D. in Theoretical Physics, Linacre College, University of Oxford. Supervised by Juan P. Garrahan and David Sherrington

2001 MPhys, Trinity College, University of Oxford

1991-1997 Dunblane High School, Dunblane, Scotland


Research area

My group studies nanoscale self-assembly and pattern formation using the techniques of statistical mechanics. At the Molecular Foundry, we work in collaboration with outside Users from academia and industry. Recent User projects include work on molecular tilings and multicomponent self-assembly. Please email me for more information about the Molecular Foundry User program in statistical mechanics.

Research group

Former group member

  • Dr. Dina Mirijanian (Jun 2009-Jul 2012). Dina developed an atomistic forcefield for peptoids, in order to understand the structure and stability of peptoid nanosheets. She is now a postdoc with Mike Hagan at Brandeis.

Preprints

Publications

  1. Growth of equilibrium structures built from a large number of distinct component types, L.O. Hedge, R.V. Mannige and S. Whitelam* here
  2. Viewpoint: A Recipe for Error-Free Self-Assembly, S. Whitelam, Physics 7, 62 (2014)
  3. Self-assembly at a nonequilibrium critical point, S. Whitelam*, L.O. Hedges and J.D. Schmit, Phys. Rev. Lett. 112, 155504 (2014)
  4. Common physical framework explains phase behavior and dynamics of atomic, molecular and polymeric network-formers , S. Whitelam*, I. Tamblyn*, T.K. Haxton, M.B. Wieland, N.R. Champness, J.P. Garrahan and P.H. Beton*, Phys. Rev. X 4, 011044 (2014)
  5. Development and use of an atomistic CHARMM-based forcefield for peptoid simulation, D.T. Mirijanian, R.V. Mannige, R.Z. Zuckermann, S. Whitelam*, J. Computational Chemistry, 35, 5, 360 (2014)
  6. Competing thermodynamic and dynamic factors select molecular assemblies on a gold surface, T. K. Haxton, H. Zhou, I. Tamblyn, D. Eom, Z. Hu, J.B. Neaton, T. Heinz*, S. Whitelam*, Phys. Rev. Lett. 111, 265701 (2013)
  7. Selective nucleation in porous media, L.O. Hedges and S. Whitelam*, Soft Matter, 9, 41, 9763 (2013)
  8. Microscopic Evidence for Liquid-Liquid Separation in Supersaturated CaCO3 Solutions, A. F. Wallace*, L. O. Hedges, A. Fernandez-Martinez, P. Raiteri, J. D. Gale, G. A. Waychunas, S. Whitelam, J. F. Banfield, J.J. De Yoreo*, Science 341, 648, 885 (2013)
  9. Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals, R. Bardhan, L.O. Hedges, C.L. Pint, A. Javey, S. Whitelam*, J.J. Urban*, Nature Materials (2013)
  10. Do hierarchical structures assemble best via hierarchical pathways?, T. K. Haxton, S. Whitelam*, Soft Matter 9, 6851-6861 (2013)
  11. Self-assembly of multicomponent structures in and out of equilibrium, S. Whitelam*, R. Schulman*, L.O. Hedges, Phys. Rev. Lett. 109, 265506 (2012)
  12. Patterning a surface so as to speed nucleation from solution, L.O. Hedges and S. Whitelam*, Soft Matter 8, 8624 (2012)
  13. Real-time Imaging of Pt3Fe Nanorod Growth in Solution, H.-G. Liao, L. Cui, S. Whitelam, H. Zheng*, Science 336, 6084, 1011 (2012)
  14. Design rules for the self-assembly of a protein crystal, T.K. Haxton and S. Whitelam*, Soft Matter 8, 3558 (2012)
  15. Random and ordered phases of off-lattice rhombus tiles, S. Whitelam*, I. Tamblyn, P.H. Beton, J.P. Garrahan, Phys. Rev. Lett. 108, 035702 (2012)
  16. Analyzing mechanisms and microscopic reversibility of self-assembly, J. Grant, R.L. Jack*, S.Whitelam*, J. Chem. Phys. 135, 214505 (2011)
  17. Limit of validity of Ostwald's rule of stages in a statistical mechanical model of crystallization, L.O. Hedges and S. Whitelam*, J. Chem. Phys. 135, 164902 (2011)
  18. Electrostatics and aggregation: how charge can turn a crystal into a gel, J. Schmit*, S. Whitelam and K. Dill, J. Chem. Phys. 135, 085103 (2011)
  19. Approximating the dynamical evolution of systems of strongly-interacting overdamped particles, S. Whitelam*, Molecular Simulation, 37, 7 (2011) ; preprint here
  20. Folding of a Single-Chain, Information-Rich Polypeptoid Sequence into a Highly-Ordered Nanosheet, R. Kudirka, H. Tran, B. Sanii, K.-T. Nam, P. H. Choi, N. Venkateswaran, R. Chen, S. Whitelam, and R. N. Zuckermann* Biopolymers: Peptide Science (2011)
  21. Control of pathways and yields of protein crystallization through the interplay of nonspecific and specific attractions, S. Whitelam*, Phys. Rev. Lett. 105, 088102 (2010) (version with high-resolution images here)
  22. Microscopic implications of S-DNA, S. Whitelam*, P.L. Geissler, and S. Pronk Phys. Rev. E 82, 021907 (2010)
  23. Nonclassical assembly pathways of anisotropic particles, S. Whitelam*, J. Chem. Phys. 132, 194901 (2010)
  24. Self-assembly of amphiphilic peanut-shaped nanoparticles, S. Whitelam* and S.A.F. Bon, J. Chem. Phys. 132, 074901 (2010)
  25. Transformation from spots to waves in a model of actin pattern formation, S. Whitelam*, T. Bretschneider and N.J. Burroughs, Phys. Rev. Lett. 102, 198103 (2009)
  26. The impact of conformational fuctuations on self-assembly: Cooperative aggregation of archaeal chaperonin proteins, S. Whitelam, C. Rogers, A. Pasqua, C. Paavola, J. Trent and P. L. Geissler, Nano Letters, 9, p. 292-297 (2009)
  27. Stretching chimeric DNA: a test for the putative S-form, S. Whitelam, S. Pronk and P.L. Geissler, J. Chem. Phys. 129, 205101 (2008)
  28. The role of collective motion in examples of coarsening and self-assembly, S. Whitelam, E. H. Feng, M. F. Hagan, P. L. Geissler, Soft Matter 5, 6, p1251 (2009)
  29. There and (slowly) back again: Entropy-driven hysteresis in a model of DNA overstretching, S. Whitelam, S. Pronk and P.L. Geissler, Biophys. J. 94, 2452 (2008)
  30. Avoiding unphysical kinetic traps in Monte Carlo simulations of strongly attractive particles, S. Whitelam and P.L. Geissler, J. Chem. Phys. 127, 1 (2007)
  31. Two-stage coarsening mechanism in a kinetically constrained model of an attractive colloid, S. Whitelam and P. L. Geissler, Phys. Rev. E 73, 016115 (2006)
  32. Renormalization group study of a kinetically constrained model for strong glasses, S. Whitelam, L. Berthier and J.P. Garrahan, Phys. Rev. E 71, 026128 (2005)
  33. Facilitated spin models in one dimension: a real-space renormalization group study, S. Whitelam and J.P. Garrahan, Phys. Rev. E 70, 046129 (2004)
  34. Geometrical picture of dynamical facilitation, S. Whitelam and J. P. Garrahan, J. Phys. Chem. B 108, 6611 (2004) (issue in honor of H.C. Andersen)
  35. Dynamic criticality in glass-forming liquids, S. Whitelam, L. Berthier and J. P. Garrahan, Phys. Rev. Lett. 92, 185705 (2004)

Comments

  1. Microscopic implications of competing pictures of DNA overstretching, S. Whitelam Physics of Life Reviews, Elsevier 2010 (invited ‘open peer’ comment on "Biophysical characterization of DNA binding from single molecule force measurements", by Kathy R. Chaurasiya et al.)



 

Previous Positions

2007-2008 Postdoctoral Fellow, Systems Biology Centre, University of Warwick. Supervised by Nigel Burroughs

2004-2007 Postdoctoral Fellow, Department of Chemistry, University of California at Berkeley. Supervised by Phillip L. Geissler

Miscellaneous

No scientist's webpage is complete without a list of the awards they hold dearest.

And, just as defensive driving saves lives, so defensive scientific writing helps protect the career of the aspiring scientist.