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METHODS

We used a collection of Monte Carlo algorithms to study tiling thermodynamics and dynamics. Simulation boxes
were rhombus-shaped and periodically replicated in imitation of bulk surroundings. To study the packing of hard
rhombi (Fig. 1, main text) we used standard constant-pressure moves [1], single-particle Metropolis translations and
rotations [1], and the following 3-particle rotation algorithm. Starting from microstate 1 (say), we selected at random
a tile i, and then selected at random any two tiles able to interact with it through the specific interaction (even though
εs = 0). We call such particles ‘H-bonded neighbors’. If fewer than two such neighbors existed, the move was aborted.
Otherwise, we rotated our three chosen particles by 60◦ (with either sense) about their center of mass, defining a
proposed new microstate 2. We accepted this rotation with probability min(1, n1(n1 − 1)/[n2(n2 − 1)] exp(−β∆E)).
The variable n1 is the number of H-bonded neighbors possessed by tile i in microstate 1; the factor it appears in
accounts for the fact that tile i might have a different number of H-bonded neighbors following the proposed rotation.
The term ∆E is the change of energy following the move. This algorithm, effectively a rigid rotation of trimers
arranged in compact near-hexagon arrangement, allows efficient conversion between ordered and random dense tilings.

To study the self-assembly of clusters of interacting rhombi (Fig. 2,3, main text, and Fig. S3) we used standard
umbrella sampling of the size of a growing cluster [1, 2] in conjunction with single-particle moves, the virtual-
move algorithm [3] of Ref. [4] (to allow collective rearrangements of tilings), the 3-particle rotation algorithm,
and grand canonical insertions and deletions of rhombi at constant chemical potential [1]. In Fig. 2, main
text, eight independent simulations were done for each rhombus aspect ratio shown. The interconversion of
dense tilings (Fig. 4a, main text) was studied using the three-particle rotation algorithm, and dynamic simulations
of rhombus self-assembly (Fig. 4b, main text) were done using grand-canonical moves and the virtual-move algorithm.

We characterized solid order using the parameter Ψ ≡ (0.608n‖ − 0.392n‖̄)/(0.608n‖ + 0.392n‖̄). Here n‖ is the
total number (within the simulation box or the largest cluster, as appropriate) of H-bonds between particles whose
long diagonals lie closer to being parallel than nonparallel. n‖̄ is the total number of all other H-bonds. This order
parameter allows us to distinguish random tiled structures (|Ψ| ≈ 0) from crystalline structures with parallel order
(Ψ . 1) or nonparallel order (Ψ & −1; see Fig. S1 for examples of these phases).

We also carried out density functional theory (DFT) calculations [5] of TPTC in vacuum (Figs. 1 and 3, main text)
using the B3LYP [6] functional and the the 6-311+G? basis set. This basis set includes both diffuse and polarization
functions.
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irregular rhombus with angles 72, 108 degrees

 time 0, eps_parallel =  5.2,  eps_sixty =  5.2,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =697, nrg = -8.38565, n_parallel =840; n_60= 284; psi = 0.64206 

 time 0, eps_parallel =  5.2,  eps_sixty =  5.2,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =565, nrg = -7.77699, n_parallel =615; n_60= 230; psi = 0.611446 

 time 0, eps_parallel =  5.2,  eps_sixty =  5.2,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =524, nrg = -7.94885, n_parallel =297; n_60= 504; psi = -0.0449353 

FIG. S1: Snapshots of nonparallel ordered (Ψ ≈ −0.7)-, random (Ψ ≈ 0)- and parallel ordered (Ψ ≈ 0.5) tilings, from left to
right. See introduction, main text.
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〈ρ〉 = 0.72 〈ρ〉 = 0.82

 time 25150000, eps_parallel =  0,  eps_sixty =  0,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =768, nrg = 0, n_parallel =65; n_60= 73; psi = 0.160033 

 P = 45 (L_x,L_y) = (16.4688,16.1867) 

 time 12967500, eps_parallel =  0,  eps_sixty =  0,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =768, nrg = 0, n_parallel =127; n_60= 291; psi = -0.192673 

 P = 60 (L_x,L_y) = (15.3569,15.3849) 

〈cos(6θij)〉 = 0.02 〈cos(6θij)〉 = 0.78

FIG. S2: Two simulation boxes of equilibrated regular rhombi. See Fig. 1, main text.
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 time 2330000, eps_parallel =  5.2,  eps_sixty =  5.2,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =465, nrg = -7.15699, n_parallel =20; n_60= 620; psi = -0.904702 

 time 2330000, eps_parallel =  5.2,  eps_sixty =  5.2,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =465, nrg = -7.15699, n_parallel =20; n_60= 620; psi = -0.904702 

 time 0, eps_parallel =  5.2,  eps_sixty =  5.2,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =446, nrg = -7.12377, n_parallel =9; n_60= 602; psi = -0.954675 

∆ = .3
random

ordered

l∆

FIG. S3: Placing patches a fraction ∆ between small- and large internal angles of the regular rhombus leads to self-assembly
of the random tiling only close to the midpoint placement ∆ = 1/2. For large or small ∆ the nonparallel mode of binding
can still operate readily, but the parallel mode of binding becomes staggered (see snapshot), and cannot operate in a dense
tiling. The least bias towards the nonparallel ordered phase is seen for patches shifted slightly towards the small internal angle
(∆ ≈ 0.48). See Fig. 2, main text.
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 time 0, eps_parallel =  5.2,  eps_sixty =  5.2,  eps_nonspec =  0, mu = 0 

 linker length/a = 0.1 

 particles =1012, nrg = -9.82451, n_parallel =665; n_60= 1247; psi = -0.0946141 

FIG. S4: Example of a tiling grown from regular rhombi. See Fig. 2, main text.
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