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DYNAMIC SIMULATIONS

We conducted virtual-move Monte Carlo (VMMC)
simulations [1] using the ‘symmetrized’ version of the al-
gorithm described in Refs. [2, 3]. This algorithm approx-
imates overdamped dynamics for short-range interacting
particles in solution by self-consistently attempting and
accepting cluster moves according to gradients of poten-
tial energy. The following description assumes familiarity
with this algorithm.

At each Monte Carlo (MC) step, we attempt a rota-
tion move with probability pr and a translation move
with probability pt = 1 − pr. A translation move shifts
a monomer’s x and y coordinates by random displace-
ments in the interval (−∆t/2,∆t/2). A rotation move
changes the seed monomer’s orientation vector from û to
û′ = (û + rû⊥)/|û + rû⊥|, where r is a random num-
ber in the interval (−∆r/2,∆r/2) and û⊥ is a unit vector
perpendicular to û and in the plane of the substrate. For
an isolated monomer, these moves result in translational
and rotational diffusion coefficients

Dt =
pt

24tcycle
(∆t)

2
,

Dr =
pr

24tcycle
(∆r)

2
,

(1)

where tcycle is the time interval assigned to each MC cy-
cle.

We assume that the dominant source of drag is
from the three-dimensional fluid surrounding the pro-
tein, rather than from the interaction with the two-
dimensional substrate. We take the kinematic and dy-
namic viscosities of the aqueous solvent to be ν = 1.00×
10−6m2/s and η = 1.00 Pa s, respectively. Inertial ef-
fects are controlled by the Reynolds number Re = av/ν,
where a = 3.9 nm is the characteristic length scale of the
protein monomers and v is a characteristic velocity. Us-
ing the thermal velocity v =

√
kBT/m, where m = 132

kDa is the protein mass, results in Re = 0.017. Alter-
nately, balancing a characteristic drag force 6πηav with a
characteristic inter-protein force F = 100kBT/a, taking
characteristic interaction strengths and separations to be
on the order of 10kBT and 0.1a, respectively, results in a
characteristic velocity v = 100kBT/6πηa2 and Re =. In
either case, Re is small, so we neglect inertia.

In order to have a reasonably efficient simulation, we
do not calculate the fluid flow; instead, we let the drag
acting on a cluster be equivalent to the drag acting on an
isolated sphere with the same hydrodynamic radius. We
define the hydrodynamic radius of a cluster C as a gen-

eralization of the radius of gyration [1]. For translations,

Rt
2 ≡ 〈|(r − rcom)× n̂|2〉r∈C , (2)

where rcom is the center of mass and n̂ is the direction
of the translation. For rotations,

Rr
2 ≡ 〈|(r − raxis)× ẑ|2〉r∈C , (3)

where raxis is the center of rotation and ẑ is the axis of ro-
tation, perpendicular to the substrate. We take r ∈ C to
include all points within the hard cores of the monomers.
The radius of gyration of a (real) monomer depends not
only on its two-dimensional footprint on the substrate,
but also on its height. We take the height of a monomer
to be equal to its width. Since the hydrodynamic radii
of a sphere are Rt

2 = Rr
2 = 2R2/5, the Stokes solutions

for the drag on a sphere are

D?
t (Rt) =

kBT

6πη
√

5/2Rt

,

D?
r (Rr) =

kBT

8πη(5/2)3/2Rr
3 .

(4)

We parameterize the algorithm to yield Eq. (4) for iso-
lated, strongly-bound clusters with hydrodynamic radii
Rt and Rr. We can enforce Eq. (4) a priori if we assume
that the trial step sizes ∆t and ∆r are large compared to
the size of the bonds, so that individual moves are always
suppressed and only whole-cluster moves are accepted.
We will consider realistic cases where single-monomer re-
laxations are allowed shortly. First, we ensure that clus-
ters with the smallest possible radii of gyration satisfy
Eq. (4). For rotations, the smallest possible radius of
gyration is that of a monomer, Rr

0 = 0.698a. For trans-
lations, the radius of gyration of a monomer depends on
the direction of translation. Drag is least for translation
along the long axis, for which Rt

0 = 0.408a. Plugging
these minimal radii of gyration into Eqs. 1 and 4 con-
strains the relative frequency of translation and rotation
moves according to

pr

pt
= 0.361

(
∆t

a∆r

)2

. (5)

We will choose appropriate trial step sizes shortly.
Next, we ensure that larger clusters also obey Eq. (4).

Since we have already constrained the diffusion coeffi-
cients of the smallest possible clusters, it is sufficient to
require

Dt(Rt)
Dt(Rt

0)
=
Rt

0

Rt
,

Dr(Rr)
Dr(Rr

0)
=
(
Rr

0

Rr

)3

.

(6)
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FIG. 1: Ratio of diffusion coefficients D(R) to D?(R), the
solution of Eq. (4), for rotations and translations of clusters
of 1, 4, 16, and 64 monomers, where R is the average measured
radius of gyration.

We enforce Eq. (6) by employing cutoffs that depend on
the hydrodynamic radii, in addition to the usual parti-
cle number-dependent cutoff of the VMMC algorithm [1].
Before each attempted translation or rotation, we draw
two random numbers, q and x, from the interval (0, 1).
As we build a cluster according the the VMMC algo-
rithm, we reject the move in situ if the hydrodynamic
radius R exceeds R0q

−ν or the number of monomers in
the cluster Nc exceeds 1/x. According to this scheme,
the diffusion coefficient per MC cycle is

D(Nc, R) = NcD(1, R0)
(
R

R0

)−1/ν 1
Nc

, (7)

where D(1, R0) is the diffusion coefficient of a single
monomer with radius of gyration R0. The prefactor Nc is
the average number of times the cluster is selected for a
trial move per MC cycle, once per monomer in the clus-
ter. Choosing ν = 1 for translations and ν = 1/3 for
rotations reduces Eq. (7) to the desired form of Eq. (6).

In practice, we aim both to produce the correct dif-
fusion coefficients of Eq. (4) and to allow local relax-
ation within clusters. This requires optimizing the trial
step sizes ∆t and ∆r. To do so, we performed VMMC
simulations to measure the diffusion coefficients of iso-
lated, compact clusters of size 1 to 256 bound by perma-
nent specific bonds. For ∆t and ∆r much smaller than
the specific bond range s = 0.1a, single-monomer trial
moves rarely change the potential energy and are almost
always accepted, leading to the incorrect free-draining
diffusion scalings of single-particle MC or Brownian dy-
namics, Dt ∝ Rt

−2 and Dr ∝ Rt
−4. For ∆t and ∆r

much larger than s, the algorithm efficiently rejects trial
moves of incomplete clusters and proposes cluster moves
of the entire cluster with a probability determined by
the cutoffs for the radii of gyration. While this yields the
correct diffusion scaling, it suppresses internal relaxation.
In order to produce the correct diffusion scaling while al-

lowing local rearrangements, we choose the smallest step
sizes that produce the correct diffusion coefficients up to
an accuracy of about 10%. We find these to be ∆t = 0.8a
and ∆r = 0.5. With these choices, single-monomer moves
account for the majority of accepted moves, but whole-
cluster moves dominate the long-time diffusive motion.

Fig. 1 shows that the choices ∆t = 0.8a and ∆r = 0.5
yield the correct diffusion coefficients of Eq. (4). Notice
in Fig. 1 that single monomers have a translational diffu-
sion coefficient greater than predicted by Eq. (4) because
of their anisotropic shape: diffusion occurs preferentially
along the long axis, for which the hydrodynamic radius is
smaller, but the average hydrodynamic radius appearing
in Eq. (4) samples all directions equally. The transla-
tional diffusion coefficients of the larger, more compact
clusters, as well as all of the rotational diffusion coef-
ficients, lie near the Stokes solution, Eq. 4. The free-
draining solutions for both translational and rotational
diffusion fall off as 1/R relative to the Stokes solution.
Fig. 1 demonstrates that this parameterization of the
virtual-move algorithm can much more closely approx-
imate Stokes flow than can free-draining motion. The
latter is generated by simple implementations of Brow-
nian dynamics, and by single-particle MC algorithms in
the limit of vanishing step size. This difference is poten-
tially significant: Fig. 1 reveals that for clusters of even
modest size (e.g. ∼ 60 particles), the free-draining diffu-
sion constant is an order of magnitude smaller than the
Stokes one.

Applying Eq. (5), our choices of ∆t and ∆r yield at-
tempt frequencies pt = 0.520 and pr = 0.480. Combining
Eq. (1) and (4) for a monomer with R0 = 0.408a yields
a time per MC cycle of

tcycle =

√
5
2
πηpt∆t

2R0

4kBT
= 2.42 ns. (8)

We used dynamic simulations to calculate the scaled
yield and to generate pathway diagrams shown in Fig.
4 of the main text. Letting f2 and f3 be the fraction
of monomers with two and three satisfied specific bonds,
respectively, we define the scaled yield as in Ref. [4] by
f̂3 ≡ f3(f3/(f3 + f2))2, rewarding crystalline clusters
with large bulk-to-surface ratios. In the color maps of
yield in the main text, we report the scaled yield after
an arbitrary choice of 107 MC cycles, or 24.2 ms. We
find that the qualitative behavior is insensitive to this
choice. We constructed pathway diagrams by recording
the maximum fraction of monomers in various configu-
rations over the course of assembly. Fig. 2 shows time
traces of these fractions for two examples corresponding
to points in Figs. 3 and 4 of the main text. Panel (a)
shows a pathway that proceeds via misbound configu-
rations, while panel (b) shows a pathway that proceeds
directly.
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FIG. 2: Fraction of monomers in various configurations vs
time for (a) φ = 0.1, εn = 1, εs = 10 and (b) φ = 0.1, εn =
1, εint = 5, demonstrating the difference between a ‘mis-
bound’ pathway and a direct pathway. ‘Square lattice’ de-
notes monomers with all three specific bonds, and ‘misbound’
denotes monomers with their external specific bond satisfied
but only one of their two internal specific bonds satisfied.

EQUILIBRIUM SIMULATIONS

We numerically calculated fluid-solid coexistence pack-
ing fractions φfluid and φsolid by conducting direct coex-
istence Monte Carlo simulations at fixed T , N , and to-
tal area A. We initialized each periodic simulation box
with an aspect ratio 4 : 1 and a crystal slab spanning
the short axis of the box. We allowed the aspect ra-
tio to fluctuate to let the system adopt its equilibrium
lattice spacing. We used a mixture of moves, each obey-
ing detailed balance, to facilitate efficient equilibration.
We used non-local aggregation-volume bias [5] and tele-
portation [4] moves to facilitate exchange between solid
and fluid phases. We used 180 degree rotations of sin-
gle monomers to facilitate sampling of specific bonds and
rigid 90 turn moves of two adjacent, parallel monomers to
facilitate conversion among close-packed crystal phases.
We also used rigid rotations and translations of bound
dimers and tetramers. We chose appropriate probabil-
ities for each move type depending on the interaction
strengths (e.g. more nonlocal moves for systems with
strong bonds), with the remaining probability split be-

square lattice rectangular
crystal

close-packed dimerclose-packed tetramer

FIG. 3: Sketches of the four crystal phases.

tween single-particle translations and rotations.
We consider the four crystal phases sketched in Fig. 3.

Depending on the values of εint, εext, and εn, we per-
formed one or more simulations starting with slabs of
square lattice, rectangular, close-packed tetramer, or
close-packed dimer crystals. While we did not attempt
to accurately measure solid-solid equilibria with simula-
tions, we only found narrow regions of interaction space
over which two crystal phases are stable, and these re-
gions are consistent with the solid-solid phase boundaries
calculated analytically with mean-field theory (see next
section).

We numerically calculated liquid-vapor coexistence
packing fractions φliquid and φvapor by performing Gibbs
ensemble simulations [6], using combinations of the same
local and nonlocal moves. At intermediate values of εn
and low values of εint and εext, we find coexisting liquid-
vapor mixtures in which each phase consists mostly of
unbound monomers. These packing fractions define a
stable liquid-vapor binodal, as shown e.g. for protein 1
in Fig. 1(b) of the main text. We determine the liquid-
vapor critical point {φc, Tc} by conducting least-squares
fits to the functions

(φliquid − φgas)8 = c1(Tc − T ) (9)
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FIG. 4: Sketches of the four oligomers.

and

1
2

(φliquid + φgas) = φc + c2(Tc − T ), (10)

where c1 and c2 are constants. Eq. 9 is the expected
form for systems in the two-dimensional Ising universal-
ity class, and Eq. 10 is the empirical law of rectilinear
diameter. As εint and εext increase, the binodal is sub-
sumed by the solubility curve and becomes metastable.
While crystallization sets in too rapidly for us to measure
the metastable binodal directly, we estimate the location
of the metastable liquid-vapor critical point for proteins
2 (εint/εn = 1.5) and 3 (εint/εn = 2) in Fig. 1 of the main
text by linear extrapolation along εext/εint = 2 from their
locations at εint/εn = 0 and 1. We find a weak depen-
dence on the specific interaction strength,

Tc = 0.431 + 0.013εint/εn,
φc = 0.284 + 0.002εint/εn.

(11)

In addition to the monomer liquid, at intermediate val-
ues of εn, low values of εint, and high values of εext, we find
coexisting liquid-vapor mixtures in which each phase con-
sists mostly of bound dimers. For example, in Fig. 2 of
the main text, the upper-left corner of the phase diagram
corresponds to a dimer gas coexisting with a dimer liquid.
We find no parameters for which a liquid of tetramers is
stable, due to the smaller relative interaction range for
tetramers.

MEAN-FIELD THEORY

We used analytic mean-field theory to calculate stable
and metastable solid-fluid and solid-solid phase bound-

aries, thermodynamic driving forces for assembly, and
second virial coefficients. For the solid-vapor phase
boundaries, we find excellent agreement between the
mean field theory and the numerically calculated solu-
bility curves, as shown in Fig. 1 of the main text. The
solid-solid phase boundaries run through the narrow re-
gions of parameter space in which both solids are stable
on the timescale of the direct coexistence simulations.
We do not attempt to account for liquid phases in the
mean-field theory; we identify regions of liquid stability
using Gibbs ensemble simulations.

We calculated the canonical partition function Z ≡
ZidealQ and the associated dimensionless Helmholtz free
energy density F ≡ − ln(Q)/N for homogeneous gas
phases composed of each of the four oligomers sketched in
Fig. 4 and coexisting combinations of the four gas phases
and four crystal phases sketched in Fig. 3. For the ho-
mogeneous monomer gas,

Qmonomer =
(

1
2πA

)N ∫
(dr)N (dθ)N

∏
i<j

(1 + fij), (12)

where fij ≡ exp(−Uij/kBT ) − 1 is the Mayer f-function
and Uij is the potential energy between monomers i and
j. Employing a cluster expansion [7, 8] we find

Fmonomer =
Bmonomer

2

la2
φ+O(φ2), (13)

where

Bmonomer
2 = − 1

4π

∫
dr12dθ12f

monomer
12 (14)

is the second virial coefficent. The full solution for the
second virial coefficient is

Bfull
2 =

1
4π
(
νh − (eεn − 1)(νn − 2νint − νext)− 2(eεn+εint − 1)νint − (eεn+εext − 1)νext

)
, (15)

where νh is the configurational volume excluded by the
hard cores, νn is the configurational volume within the
nonspecific interaction range, and νint and νext are the

configurational volumes within the specific interaction
ranges. We define the reduced second virial coefficient
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(reported on plots in the main text) as

B?2 = Bfull
2 /Bhard core

2 , (16)

where

Bhard core
2 =

νh

4π
(17)

is the hard-core part. However, since we define the
monomer gas phase as the phase containing negligible
specific bonds, we neglect the specific interactions in cal-
culating the monomer gas free energy. Thus, we use a
restricted version of the second virial coefficient,

Bmonomer
2 =

1
4π

(νh − (eεn − 1)νn) . (18)

In computing the solubility curves and the thermody-
namic driving forces for Fig. 1 of the main text, we cut
off the solution to Eq. 14 at 2Bmonomer

2 φ/la2 = −1. For
2Bmonomer

2 φ/la2 < −1 we expect higher-order terms in
the cluster expansion to be significant.

Defining an oligomer gas phase as a gas satisfying all
specific bonds commensurate with the oligomer, we sep-
arate the inter- and intra-oligomer degrees of freedom for
each n-mer gas to obtain

Qoligomer =
N !
M !n!

(
νoligomerφ

2πNla2

)M(n−1)

eNεoligomerQcom,

(19)
whereM = N/n, (νoligomer)n−1 is the configurational vol-
ume per oligomer given a fixed center of mass and global
orientation, −εoligomerkBT is the energy per monomer,
and

Qcom =
(

1
2πA

)M ∫
(drcom)M (dθ)M

∏
i<j

(1+f com
ij ) (20)

is the configurational integral for the center-of-mass de-
grees of freedom. Performing a cluster expansion, we
obtain

Foligomer = 1− ln(n) + 1
n

+
n− 1
n

ln
(

2πla2

νoligomerφ

)
− εoligomer +

Bcom
2

la2
φ+O(φ2), (21)

where

Bcom
2 ≡ − 1

4nπ

∫
dr12dθ12f

com
12 . (22)

To calculate Bcom
2 , we neglect specific bonds external to

the oligomers and fix the internal degrees of freedom in
their mean-field coordinates. The solutions are

Bdimer
2 =

1
8π

(νh,dimer − (eεn − 1)νn,dimer) ,

Btetramer
2 =

1
16π

(νh,tetramer − (eεn − 1)νn,tetramer) ,

Btrimer
2 =

1
12π

(νh,trimer − (eεn − 1)νn,trimer) ,

(23)
where νh,dimer, νh,tetramer, and νh,trimer are the configura-
tional volumes excluded by the hard cores and νn,dimer,

νn,tetramer, and νn,trimer are the configurational volumes
of overlapping nonspecific interaction ranges.

For crystal phases coexisting with gas phases, we sepa-
rate the crystal and gas degrees of freedom in the canon-
ical partition function to write

Zco(N,φ) = Zcrystal(Ncrystal, φcrystal)Zgas(Ngas, φgas).
(24)

We calculate Z(Ncrystal) using the cell method [9] that
approximates

Zcrystal(Ncrystal, φcrystal) = Z1(φcrystal)
Ncrystal , (25)

where Z1 is the partition function of a single monomer
with neighboring monomers fixed at their mean-field co-
ordinates. With some algebraic simplifications we obtain

Fco(Ngas, φgas) =
(

1− Ngas

N

)(
1 + ln

(
2πla2

νcrystalφ

)
− εcrystal

)
+
Ngas

N

(
Foligomer(φgas)− ln

(
φ

φgas

))
, (26)

where νcrystal is the configurational volume available to
a monomer given the fixed coordinates of its neigh-

bors. For φcrystal >> φ and φcrystal >> φgas, we use
Ngas/N ≈ φgas/φ. Using this approximation and com-
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bining Eq. (21) and (26) yields

Fco(φgas) =
(

1− φgas

φ

)
Fcrystal +

φgas

φ

(
Folig,0 +

1
la2

Bolig
2 φgas +

1
n

ln(φgas)
)
, (27)

where

Fcrystal ≡ 1 + ln
(

2πla2

νcrystalφ

)
− εcrystal (28)

and

Folig,0 = 1− ln(n) + 1
n

+
n− 1
n

ln
(

2πla2

νolig

)
− ln(φ)−εolig.

(29)
Equation 27 must be minimized with respect to φgas

to determine φgas, the packing fraction (solubility con-
centration) of the gas phase. The solution for φgas is

φmin
gas =

la2

2nBolig
2

W (x), (30)

where W is the Lambert W-function and

x ≡ 2nBolig
2

la2
en(Fcrystal−Folig,0)−1. (31)

Notice that the dependence on φ cancels in Fcrystal −
Folig,0 so that φmin

gas is independent of φ. At large interac-
tion strength x is small, and using W (x) = x+O(x2) we
obtain an algebraic expression for the solubility packing
fraction:

φmin
gas = exp

(
n

(
ln
(

2πla2

νcrystal

)
− εcrystal +

ln(n) + 1
n

− n− 1
n

ln
(

2πla2

νolig

)
+ εolig

)
− 1
)

(32)

For a monomer gas, this simplifies to

φmin
gas =

(
2πla2

νcrystal

)
e−εcrystal . (33)

In addition to finding phase coexistence boundaries, we
use the mean-field theory to determine free energy differ-
ences. In particular, we calculate F , the thermodynamic
driving force for assembly. Since the formation of small
oligomers is a much faster process than crystallization,
we define F as the difference in free energy between the
most stable stable homogeneous fluid phase (from Eq. 21)

and the most stable square lattice phase (from Eq. 27).

Finally, we calculate the supersaturation at a given
thermodynamic driving force by setting

F = Foligomer −Fco(φgas), (34)

using Foligomer from Eq. 21 and Fco from Eq. 27. If
both the homogeneous and coexisting systems contain
a monomer gas, rather than an oligomer gas, this results
in the particular simple expression

F =
Bmonomer

2 φgas

la2

(
φ

φgas
− φgas

φ

)
− 1 +

φgas

φ
− ln

(
φgas

φ

)
(35)

Using the low-temperature expression Eq. 33, we obtain
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F =
2πBmonomer

2

νcrystal
e−εcrystal

(
φ

φgas
− φgas

φ

)
− 1 +

φgas

φ
− ln

(
φgas

φ

)
(36)

For large values of εcrystal (low temperatures), we may
neglect the first term, resulting in a concentration- and
temperature-independent expression for the supersatura-
tion S,

S ≡ φ

φgas
=

−1
W (− exp(−1−F))

, (37)

where, again, W is the Lambert W-function. For large
values of F , this approximates to

S = e1+F − 1 +O
((
e−1−F)2) . (38)

Thermodynamic driving forces of 1, 2, and 3 correspond
to supersaturations of 6.3, 19.1, and 53.6. We can there-
fore transform our rule of thumb for good assembly,
F = 1 − 2 kBT , into a rule of thumb for the supersat-
uration, S = 5 − 20. We stress that the conversion be-
tween thermodynamic driving force and supersaturation
is independent of concentration and temperature, as long
as the temperature is low enough so that the first term
in Eq. 37 may be neglected. We therefore expect that
a similar window of optimal supersaturation may exist
for real protein systems, though the precise value of the
window will depend on the optimal values of F .

To determine the numerical values of the phase bound-
aries, reduced second virial coefficients, and free energy
differences, we must calculate the configurational vol-
umes in the theory. We calculate the configurational vol-
umes νh, νn, νh,dimer, νn,dimer, νh,tetramer, and νn,tetramer

by determining the excluded area at fixed relative ori-
entation θ, as depicted in Fig. 5, and then integrating
over θ using Mathematica [10]. We assume that bound
monomers are oriented either perpendicular or parallel
and are separated by a distance 0.1a equal to one-half
the specific interaction range. We obtain

νhard = 73.886a2,
νn = 45.296a2,
νhard,dimer = 162.093a2,
νn,dimer = 66.386a2,
νhard,tetramer = 343.416a2,
νn,tetramer = 99.745a2.

(39)

Because of the low symmetry of the trimer, the configura-
tional integrals are much more complicated, so we do not
solve them. Instead, we estimate νh,trimer = (νh,tetramer +
νh,dimer)/2 and νn,trimer = (νn,tetramer− νn,dimer)/2. This
introduces only a small error to the free energy, because
the configurational volumes only contribute logarithmi-
cally to the free energy.
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FIG. 5: Examples of areas excluded by the hard cores at
arbitrary relative orientation θ: (a) monomers, (b) tetramers,
(c) dimers at small θ, and (d) dimers at θ near π/2.

We determine the configurational volumes νint, νext,
νdimer, (νtetramer)3, and (νtrimer)2 by integrated over con-
figurations satisfying both the hard-core and the spe-
cific interaction constraints. The integrals for νint, νext,
νdimer, and νtrimer, are identical, so νint = νext = νdimer =
νtrimer. We solve the remaining integrals by numerical in-
tegration on a regular grid. We obtain

νdimer = 0.02157a2,
νtetramer = 0.0118a2.

(40)

To solve the crystal configurational volumes
νrectangular, νsquare, νcpd, and νcpt, we fix the mean-field
orientations of neighboring monomers at right angles
and constrain the bound specific interaction patches
to line up. Then, we calculate the configurational
volume available to the one freely moving monomer as
a function of one or more inter-monomer spacings, and
we maximize the volume with respect to the spacing(s).
We calculate the volumes subject to the constraint that
the energy is the maximum energy characteristic of
the crystal, and we used a combination of analytic and
numeric techniques in Mathematica [10] to perform the
calculations.
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FIG. 6: Sketches of mean-field configurations and spacings
used to calculate the crystal configurational volumes: (a) rect-
angular crystal, (b) square lattice, (c) close-packed tetramer
crystal, and (d) close-packed dimer crystal.

We sketch the mean-field configurations in Fig. 6. For
the rectangular crystal (panel (a)), we assume that the
mean-field spacing h between monomers is the same
along the long and short directions. We obtain a mean-
field spacing h = 0.1932a and configurational volume
νrectangular = 0.04085a2. For the square lattice (panel
(b)), lining up the specific patches constrains the spacing
between nonspecifically bound, perpendicular monomers
to be (l − 2)a = 0.2a. Symmetry and the previously
described constraints dictate that the spacings between
internally bound and externally bound monomers are
the same. We obtain a mean-field spacing h = 0.10a
and a configurational volume νsquare = 0.00500. For the
close-packed tetramer crystal (panel (c)), symmetry dic-
tates that the mean-field spacing between monomers that
share a long edge should be (l − 2)a = 0.2a. We obtain
a spacing between perpendicularly oriented monomers
h = 0.10a and a configurational volume νcpt = 0.00892.
For the close-packed dimer crystal (panel (d)), we as-
sume that the mean-field separations constrained by the
nonspecific interaction–that is, the separation along the
short edge and the separation along the long edge with
no patchy interactions–are the same, but that the mean-
field separation constrained by the patchy interaction
is different. We obtain a nonspecifically bound spacing
hn = 0.19, a specifically-bound spacing hs = 0.18, and a
configurational volume νcpd = 0.0138.
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FIG. 7: Phase diagram for φ = 0.1 as a function of nonspecific
interaction εn and specific interaction εs for εs ≡ εint = 2εext.
Solid (dashed) grey curves denote the stable (metastable)
boundaries for the labeled simulated coexistence combina-
tions. All boundaries were calculated using analytic theory,
except for the boundary between homogeneous and phase-
separated monomer fluids; this was determined using Gibbs
ensemble simulations. The surrounding simulation snapshots
label the equilibrium phase or coexisting phases within each
region of the phase diagram.

In the main text, we present results for a single choice
of the ratio between external and internal interaction
strength, εext/εint = 2. However, if we allow both spe-
cific interaction strengths εint and εext to vary separately,
we find a total of 11 stable phase combinations: homoge-
nous fluid phases of monomers, dimer, and tetramers; the
square lattice coexisting with the monomer, dimer, and
tetramer gases; the rectangular crystal coexisting with
the monomer gas; the close-packed tetramer crystal co-
existing with the monomer and tetramer gases; and the
close-packed dimer crystal coexisting with the monomer
and dimer gases. In addition, as mentioned in the previ-
ous section, Gibbs ensemble simulations reveal two addi-
tional phase combinations, a liquid of monomers coexist-
ing with the monomer gas and a liquid of dimers coex-
isting with the dimer gas. We find that phases involving
a gas of trimers are never stable.

Along the slice of parameter space discussed in the
main text, εext/εint = 2, we find the 6 stable phase com-
binations labeled in Fig. 7 and appearing in the analogous
phase diagram in Fig. 3 of the main text. Notice that in
addition to the monomer gas, the monomer liquid, the
square lattice, and the rectangular crystal discussed in
the main text, we also find phase combinations involv-
ing a dimer gas at low εn. If we decrease εext/εint, the
dimer gas disappears from the phase diagram, but the
dependence of the yield and pathway on εn and εint does
not qualitatively change. We find that our design rules
persist as we vary εext/εint. As we will discuss in a subse-
quent publication, the detrimental effects of nonspecific
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aggregation are exacerbated when εext/εint departs sub-
stantially from 2, and the window of moderate thermo-
dynamic driving force remains a necessary condition for
efficient crystallization.
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